
An Automatic 3D Texturing Framework

Rupert Paget
Swiss Federal Institute of Technology

Computer Vision Group
Zürich, Switzerland

rpaget@vision.ee.ethz.ch

Abstract

In this paper we address the need to automatically tex-
ture 3D objects. The currently accepted approach is to sub-
mit the 3D object to a sophisticated 3D modelling package.
Then with a lot of user know-how, correctly cut and param-
eterise the mesh so as to minimise the overall distortion.
In the presented framework, this is completely automated,
even the texture discontinuities across the mesh seams are
virtually eliminated. The framework also supports multiple
textures over the mesh, plus overlays and bump mapping.
We even revisit pixelwise texture synthesis, and show its su-
periority over conventional patch-based methods. Thereby,
included in the framework is a texture synthesiser, not only
for creating 2D texture, but also 3D volumetric texture for
the purpose of filling the 3D object.

1. Introduction

In the world of medical simulators, there is a need to
automatically texture organ models. In this paper we de-
scribe a particular framework to solve this problem. These
models are parametrically generated [17] by which they can
describe patient specific organs, or the development of an
inconsistent growing pathology like a tumour. The basic
premise of this work is that these models do not have a pre-
defined shape, and are therefore not amenable to a one off
mesh parameterisation by an expert, but vary depending on
the 3D surface. We also wish to texture these models as
realistically as possible for various scenarios. The scenar-
ios may vary depending on age or pathology of the organ.
To obtain the correct correspondence between scenario and
texture, medical knowledge is required. Therefore we pro-
vide a simple user interface between a texture database of
in-vivo images and the variable 3D model, by which an un-
trained user can automatically texture the object to their de-
sire, without the need to use a graphical designer each time.
The framework consists of an automatic mesh cutter, pa-

rameteriser, and a seam hider, to provide a realistic texture
map. Plus a 3D block synthesiser is provided for textur-
ing new surfaces that are exposed during a medical cutting
simulation. The flow of the process in our framework is
depicted in Figure 1. Obviously the same framework can
be applied to other 3D models that require an easy to use
interface for texturing. The framework is downloadable
from [10].

2. Previous work

There has been a lot of work on applying a 2D texture
to a 3D surface. Some early approaches applied direct tex-
ture synthesis to the 3D surface [19, 20]. These approaches
used the Markov random field method of texture synthe-
sis [3, 11, 18] which requires a spatial neighbourhood func-
tion. To perform the synthesis over the 3D surface the spa-
tial neighbourhood function is warped over the surface to
approximate the texture distortion by the surface. However
the approximations used are generally only good for short
range neighbourhood functions, and quickly break down for
anything but the most basic surfaces. There is also never a
one-to-one correspondence between the warped neighbour-
hood and the surface lattice, therefore the neighbourhood
pixel values need to be interpolated. This means synthesis
algorithms like [1] which preserve high frequency informa-
tion can not be used.

An alternative approach is to paste patches of texture di-
rectly onto the surface [7, 9, 12]. These methods perform
very well and arguably better than the synthesis on surface
methods. They do suffer from a lot of little texture disconti-
nuity seams (except for [9]), but these are largely eliminated
through boundary matching or alpha blending, or a combi-
nation of both. However these methods need mesh resam-
pling to correctly support the desired texture scale, which
can lead to arbitrary distortion. Mesh cutting is also dealt
with in an inconsistent manner by relying on the synthe-
sis algorithm itself. Then with any affine transformation
or replacement of the texture over the surface, the texture

(1a) In-vivo image of polyp (1b) Cropped & masked (1c) Synthesised texture

(2a) Polyp mesh with seam (2b) Flattened mesh (2c) Texture applied

(3) Final model

-

6

�
?

Figure 1. Model texturing process.

patches need to be recalculated, which is a hindrance to in-
teractivity.

With the recent advances in mesh parameterisation, we
have chosen a simple approach. Cut and parameterise the
whole 3D surface mesh to a 2D plane. Use the inverse 2D
to 3D surface mapping to project a tileable texture onto the
3D surface. Then use a similar notion as in [7] to perform
precalculated alpha blending across the mesh seams. All
affine transformations of the texture over the 3D surface are
then just simple matrix multiplications which can easily be
done interactively in OpenGL.

3. Texturing framework

3.1. In-vivo data acquisition

While in some application areas it is possible to com-
pletely synthesise artificial textures, this is not a viable ap-
proach in surgical simulation. A ground truth covering sev-
eral aspects of visual appearance of organs has to be ob-
tained, which serves as input to the texture generation chain.
For this reason, 10 hours of in-vivo video taken during vari-
ous hysteroscopies were acquired. Based on this material, a
texture database was created. The images were selected to
represent different structures in the uterine cavity. High res-
olution views of characteristic tissues were chosen, which
were optimally perpendicular to the surface without a strong
spotlight effect. We obtained 69 different samples that con-

tained usable textures of various types of tissue. These were
then cropped and masked to obtain just the desired surface
regions.

3.2. Texture synthesis

Arbitrary mapping of the in-vivo textures to a 3D surface
requires the textures to be tileable. This means that the tex-
tures need to be resynthesised. Existing texture synthesis al-
gorithms can be basically sorted into two categories. Pixel-
based approaches [3,11,18] and patch-based methods [4,8].
We decided to use the former, synthesising the required tex-
tures with a fast nonparametric pixelwise texture synthesis
(FNPTS) algorithm. It is a modified version of the multi-
scale texture synthesis algorithm presented in [11] sped up
with a neighbourhood searching scheme similar to the one
proposed in [1]. The Manhattan distance summed over the
N neighbours was chosen as the neighbourhood cost func-
tion:

Cost =
N∑
i

{
|si − ri|ni

M if si is defined
Max ni

M otherwise (1)

where si ∈ S are pixels in source image (si may be unde-
fined if it is outside the image, or is masked), and ri ∈ R
are pixels in the output image. The factor ni/M equals the
number of times the output pixel has been iterated divided

by the proposed number of iterations per pixel. If si is un-
defined, then a cost, equal the maximum possible pixel cost,
is added to the overall neighbourhood cost.

The cost function is calculated over a subset of sampling
pixels from the source image. In contrast to [1], the subset
we sample from are all pixels with a neighbour of the same
colour as the respective neighbour of output pixel being it-
erated. The pixel that returns the lowest neighbourhood cost
is chosen as the one to transfer its colour to the respective
pixel in the synthetic image. The iteration count is then in-
cremented for that output pixel. Once all output pixels have
reached their proposed number of iterations, the synthesis
process stops. The site visitation sequence across the out-
put pixels can be in any random order as described in [11].

Compared to patch-based algorithms (e.g. [4, 8]), our
pixel-based approach produces more stochastic variations in
the synthetic texture, while providing comparable fidelity.
Finally, due to its pixel-based strategy, our method can
easily cope with image masking (a high desirability when
dealing with low quality source textures). Using FNPTS,
we were able to produce a variety of different large scale
tileable tissue textures from our database. A small example
can be seen in Figure 2.

(a) In-vivo image. (b) Cropped and masked.

(c) Synthesised texture I. (d) Synthesised texture II.

Figure 2. Synthesis of in-vivo textures

3.3. Texture block synthesis

As part of the texturing framework, we also created a
3D texture synthesis algorithm. It basically works the same
as FNPTS, but the output is a 3D block of texture. The
only alteration to the algorithm is that the 2D output neigh-
bourhood is supplemented with two extra neighbourhoods

of equal size, so that there exists one 2D output neighbour-
hood in each of the three axis planes with in the 3D block.
To assign a colour to an output pixel, the neighbourhood
cost function is calculated separately for each axis plane.
The input pixel that minimises the sum of these cost func-
tions is the one that is chosen to colour the output pixel.

3D block texturing is used in the texturing framework
to texture newly exposed surfaces during a cutting proce-
dure within the surgical simulator. This is convenient, as no
2D parameterisation of the surface is required, and there-
fore can be textured in real time. One may wonder why
this technique is not used for texturing the 3D surface of or-
gans. There are two major restrictions in synthesising a 3D
texture block. One: the source texture has to be isotropic.
There are 2 axes for the source texture, but 3 for the 3D
block. Therefore at least one plane in the 3D block will
correspond to a source texture with equally labelled axes.
Two: the source texture also needs to be homogeneous, such
that any cut through the 3D block of texture will represent
a stochastic version of the 2D source texture. This means
that this method will fail for say a source texture of circles
with equal radii. The expected 3D texture block would be
a block of spheres, in which case any cut through the block
would generate circles of variable radii. However, as all but
the largest circles are not present with in the source texture,
the synthesis method will fail. Another disadvantage with
3D block texturing is the greater texture memory required
for an equivalent 3D surface texture resolution.

3.4. Mesh parameterisation

Mesh parameterisation is carried out by first cutting the
3D mesh so that it can be ”unfolded” onto a 2D plane. When
deciding how to cut the mesh, one first needs to choose
a parameterisation method. Basically mesh parameterisers
fall into two categories [5]; ones that require a fixed con-
vex boundary, and those that do not. The ones that allow
for a free boundary typically provide reduced distortion and
require fewer seams over the mesh. Of these types there
are basically two that at least partially guarantee that no tri-
angle flips will occur. There is the angle based flattening
(ABF) [14,15], and then there is the least squares conformal
maps (LSCM) [6], but as discussed in [14], ABF performs
a lot better.

3.4.1. Mesh cutting

In this work we have chosen to use the Seamster
method [16], from which the surface is separated along ex-
isting edges. This process is carried out according to two
quality metrics. Firstly, a visibility measure for mesh edges
is calculated. This is done, by rendering the scene ortho-
graphically from different viewpoints and recording how

many times each element is visible. Secondly, a distortion
measure is calculated at each mesh node by estimating the
Gaussian curvature.

The nodes that contribute significantly to the total mesh
distortion are selected. These nodes are then connected
by minimally visible seams. This problem is known to be
NP-Complete [16]. However a viable solution can be ob-
tained with the approximate minimal Steiner tree (MST) al-
gorithm [13]. A number of alternatives exists in calculating
the edge cost. We chose to supplement the calculation with
a curvature cost as described in [6], giving final cost for each
edge as:

ecost = |e|evisibility(1− ecurvature)

This helps to place cuts along edges of high curvature, in
which texture artefacts are less visible. Note though, the
curvature measure is not the same as the distortion measure.

3.4.2. Angle based flattening

After cutting, the mesh is ready for flattening and texture
parameterisation. We used the angle based flattening [15]
to flatten the mesh to a 2D domain. The algorithm min-
imises the sum of relative square distances between the an-
gles in the original mesh and that of a flattened mesh. A
set of constraints guarantees the validity of the flat mesh.
The resulting constrained minimisation problem is formu-
lated using Lagrange multipliers and solved using Newton-
Raphson method. At each iteration a large sparse linear sys-
tem needs to be solved for which we used the direct solver
SuperLU [2]. We also implemented the matrix variation as
described in [21]. This creates a simpler matrix, but can
become ill-conditioned [14]. Employing line searching and
backtracing to the Newton-Raphson method does well in
circumventing this problem.

After solving for the 2D planer angles, vertices need to
be extrapolated to a 2D plane. The traditional method of
growing the mesh by using the angles to find the 3rd vertex
in each triangle can quickly become unstable from a lack
of numerical precision. Therefore we used the global opti-
miser according to [14]. For each triangle a complex angle
can be calculated which can be quickly and efficiently used
to calculate globally optimal positions for the vertices. An
example of this process for a mesh of the Stanford Bunny is
shown in Figure 3.

3.5. Texture blending

In parameterising the 3D surface mesh, it was cut and
flattened. Then, a texture was applied to the flattened mesh,
which thereafter was backprojected onto the 3D surface.
With this method a texture discontinuity exists along the cut
seam of the mesh. Although number, length and visibility

(a) Bunny Visibility. (b) Bunny Distortion.

(c) Bunny Cut. (d) Bunny Flattened.

Figure 3. Seamster mesh parameterisation.

of the seams have been minimised, these discontinuities still
create unwanted visual artefacts. To reduce these artefacts,
we apply an enhancement step based on alpha blending.
This is done with duplicate triangles along the seams that
contain the extrapolated texture coordinates from across the
seam. Vertices directly on the seam are given an alpha value
of 0.5, while the rest are incrementally decremented as the
overlayed triangles progress away from the edge. Alpha
blending is then easily performed in OpenGL by setting the
material properties of each vertex of the overlayed triangle
to the corresponding alpha value.

The discussion so far has only focused on texturing of
a single mesh with a single texture. However, in our scene
generation, a number of different structures exist, mainly
healthy anatomy and neoplasms. In the specific case of
hysteroscopy, we artificially grow myomas and polyps in
the uterine cavity. Due to the differing genesis of these ob-
jects, they usual have different visual/textural appearance.
In which case, we separate the mesh into its different facets,
and process each one separately. Texture distortion is there-
fore minimised over each facet, and all that is required is
blending between facets.

Blending between facets is a lot more straightforward
than blending within an object. Basically we define our
complete scene with a set of submeshes, where each sub-
mesh encapsulates the surface of one facet covered by just
one texture. However for each submesh we also include an
overlap region between meshes. These submeshes are then
processed individually and texture is applied. The overlap
region contains the necessary information to apply alpha

(a) Bunny. (b) Bunny textured. (c) Bunny textured with bump mapping.

Figure 4. The Stanford Bunny

(a) Myomas. (b) A fundus polyp. (c) Underneath fundus polyp.

Figure 5. Hysteroscopy simulator textured models

blending between objects. It is easy to make this overlap
region quite large, which improves the blending across dif-
ferent textures.

4. Results

In Fig. 4 (a) the Stanford Bunny has been loaded. With
just one click the bunny is cut, and parameterised and
ready for texturing. Total time; less than one minute.
In Fig. 4 (b) a tileable texture is simply loaded onto the
bunny. Mouse interaction allows the texture to be scaled,
rotated, or translated over the 3D surface of the bunny.
The affine transforms are performed in realtime as they are
simple 4x4 matrix operations within OpenGl’s glMatrix-
Mode(GL TEXTURE). Even the alpha blending remains
consistent through such operations. Fig. 4 (c) shows that
bump mapping can also be handled within the framework.

The automatic 3D texturing framework was developed as
a tool to allow surgeons to texture their own medical sim-

ulator scenes. In Fig. 5 (a) we show a textured scene for a
hysteroscopy simulator. In this scene, each myoma is rep-
resented with its own texture. As can be seen, the texture of
the myomas blends right into the texture of the uterus wall.
No texture discontinuities can be seen. In Fig. 5 (b) we
show an example of a polyp. The undersurface of the polyp
is textured with 3D block texturing, as seen in Fig. 5 (c).
This allows any cuts or interventions made into the polyp
to be consistently textured. Figures 5 (a) and(b) also show
the application of bump mapping as well as overlay textures
(blood vessels).

5. Conclusions

We have presented a framework for automatically map-
ping 2D textures to a 3D surface. Other features are also
available within the framework, including bump mapping,
and the application of overlay textures. All that is required
is a few simple and intuitive mouse clicks. The texture that

is mapped to the surface needs to be tileable for which we
also provide a fast nonparametric pixelwise texture synthe-
siser. The synthesiser is superior to conventional patch-
based synthesisers, as it can easily handle masking of the
source texture. Such a feature is advantageous when the
source texture is of low synthesis quality (i.e. not com-
pletely of one texture, and is for example corrupted with re-
flections or oblique viewing angles). The same texture syn-
thesiser was extended to 3D block texture synthesis of ho-
mogeneous isotropic textures for texturing newly presented
surfaces exposed during cutting or intervention within the
surgical simulator.

The presented texturing framework was developed for a
surgical simulator, so that surgeons could easily apply their
knowledge when designing the surgical scenes. However
the framework is generic, and not limited to such tasks.
Anyone wishing to texture their own models within a simple
graphical user interface may simply download it from [10].

Acknowledgement

The author would like to thank all members of the hys-
teroscopy simulator team. This research has been supported
by the NCCR Co-Me of the Swiss National Science Foun-
dation.

References

[1] M. Ashikhmin. Synthesizing natural textures. In SI3D
’01: Proceedings of the 2001 symposium on Interactive 3D
graphics, pages 217–226, New York, NY, USA, 2001. ACM
Press.

[2] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and
J. W. H. Liu. A supernodal approach to sparse partial pivot-
ing. SIAM J. Matrix Analysis and Applications, 20(3):720–
755, 1999.

[3] A. Efros and T. Leung. Texture synthesis by non-parametric
sampling. In International Conference on Computer Vision,
volume 2, pages 1033–1038, Sept. 1999.

[4] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. In SIGGRAPH ’01: Proceedings of
the 28th annual conference on Computer graphics and in-
teractive techniques, pages 341–346, New York, NY, USA,
2001. ACM Press.

[5] M. S. Floater and K. H. N. A. Dodgson. Surface parame-
terization: a tutorial and survey. In M. S. Floater and M. A.
Sabin, editors, In Advances in Multiresolution for Geometric
Modelling, pages 259–284. Springer, 2004.

[6] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. In
SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, pages
362–371, New York, NY, USA, 2002. ACM Press.

[7] S. Magda and D. Kriegman. Fast texture synthesis on arbi-
trary meshes. In EGRW ’03: Proceedings of the 14th Eu-
rographics workshop on Rendering, pages 82–89, Aire-la-
Ville, Switzerland, Switzerland, 2003. Eurographics Asso-
ciation.

[8] A. Nealen and M. Alexa. Hybrid texture synthesis. In
EGRW ’03: Proceedings of the 14th Eurographics work-
shop on Rendering, pages 97–105, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics Association.

[9] F. Neyret and M.-P. Cani. Pattern-based texturing revis-
ited. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 235–242, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[10] R. Paget. Texture synthesis and analysis. http://www.
texturesynthesis.com, 2002.

[11] R. Paget and D. Longstaff. Texture synthesis via a noncausal
nonparametric multiscale Markov random field. IEEE
Transactions on Image Processing, 7(6):925–931, June
1998.

[12] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In
SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages
465–470, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[13] A. Sheffer. Spanning tree seams for reducing parameter-
ization distortion of triangulated surfaces. In SMI ’02:
Proceedings of the Shape Modeling International 2002
(SMI’02), page 61, Washington, DC, USA, 2002. IEEE
Computer Society.

[14] A. Sheffer, L. Bruno, M. Maxim, and B. Alexander. Abf++
: Fast and robust angle based flattening. ACM Transactions
on Graphics, 2004.

[15] A. Sheffer and E. de Sturler. Parameterization of faceted sur-
faces for meshing using angle based flattening. Engineering
with Computers, 17(3):326–337, 2000.

[16] A. Sheffer and J. C. Hart. Seamster: inconspicuous low-
distortion texture seam layout. In VIS ’02: Proceedings of
the conference on Visualization ’02, pages 291–298, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[17] R. Sierra, M. Bajka, C. Karadogan, G. Szkely, and M. Hard-
ers. Coherent scene generation for surgical simulators. In
Medical Simulation: International Symposium, pages 221 –
229, 2004.

[18] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH 2000, 27th
International Conference on Computer Graphics and Inter-
active Techniques, pages 479–488, 2000.

[19] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary
manifold surfaces. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interac-
tive techniques, pages 355–360, New York, NY, USA, 2001.
ACM Press.

[20] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin. Tex-
ture and shape synthesis on surfaces. In Proceedings of
the 12th Eurographics Workshop on Rendering Techniques,
pages 301–312, London, UK, 2001. Springer-Verlag.

[21] R. Zayer, C. Rossl, and H.-P. Seidel. Variations on angle
based flattening. In Proceedings of Multiresolution in Geo-
metric Modelling, pages 285–296, 2003.

