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Abstract

An often neglected key element for surgical simulators
is the ability to generate new, individual training scenes
for every session. This is necessary to avoid the adap-
tation of the trainee to the presented case. To this end,
we have developed a coherent scenario generation pro-
cess, including organ geometries, deformation parame-
ters, and visual appearance. In this paper we describe
the framework developed to address the latter element.
Our system enables automatic generation of textures
for surgical simulation based on in-vivo images.

1 Introduction

A central driving force in our current research is the
development of a highly realistic simulator for hystero-
scopic interventions [2]. In contrast to existing systems
and products [11, 16, 14], we strive to achieve the high-
est possible realism - key idea being a reference system,
which can serve as a Golden Standard for surgical per-
formance. With this strategy we try to address the
open question of the necessary level of realism for a
desired training effect. To this end, we will observe the
effect of changing system fidelity on the skill acquisition
process.

A key point in this framework is the instantiation
of a coherent surgical scene. Just like in a flight sim-
ulation, where different weather conditions, airports,
system malfunctions, etc. can be defined, surgical sim-
ulation also needs the same breadth of configurable
training conditions. In current simulators this point
is usually neglected. Single static organ models are
used, homogeneous, manually selected tissue parame-
ters are applied, and visual appearance is limited to
the predefined scene.

In [27] we have introduced a coherent scene genera-
tion process, which can be used to create variable sce-

narios, reflecting differences in individual patients. The
system addresses variability of healthy organs, growth
simulation for pathologies, tissue vascularization, and
automatic adaptation of deformation parameters. A
further link in this chain is the visual appearance of
geometries in the scene. This denotes the generation of
realistic textures, as well as obtaining appropriate tex-
ture coordinates. In this paper we described the fully
automatic texturing framework, which addresses all the
requirements related to the problem area at hand.

The flow of the process of our framework is depicted
in Figure 1. The first step is the acquisition of in-
vivo images to form a ground-truth database. Next,
tileable, variable textures are created from the in-vivo
images in a texture synthesis step. Thereafter, the tex-
ture is mapped to the 3D mesh geometry. This is done
by mesh parameterization, which takes into account
visibility of seams and distortion reduction. Finally,
textures are blended across the seams and the junc-
tions between different objects, e.g. pathologies and
healthy tissue, to reduce boundary artifacts.

2 Previous Work

Since generation of variable training scenes in surgical
simulators has only found very limited attention in the
past, synthesis of variable textures also has not been
extensively covered in this area.

In [9] an approach using polyhedron decomposition
is described, which allows the treatment of each sur-
face triangle as an independent entity with its color
information stored in a unique texture space. The
method has been applied in a simulator for minimally
invasive neurosurgery. Real images acquired during en-
doscopy were used to manually generate the textures.
A different strategy using texture samples and avoid-
ing distortion, discontinuity and repetitiveness is pre-
sented in [19]. They used their method to apply tex-
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(1a) In-vivo image of polyp (1b) Cropped & masked (1c) Synthesized texture

(2a) Polyp mesh with seam (2b) Flattened mesh (2c) Texture applied

(3) Final model
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Figure 1: Model texturing process.

ture samples to a 3D mesh of a liver, however, it does
not become clear, how they obtained the tissue sur-
face samples. This work has later on been extended
in [18] by adding dynamic effects, for instance cau-
terization or blood drops. A more complete cover-
age of the problem of texture generation in surgical
simulation has been presented in [15]. Organ specific
base textures are automatically computed by means of
a texture analysis/synthesis process. Moreover, small
features of tissue surfaces, which are not captured in
the analysis/synthesis step, can be added with a pro-
cedural texturing approach. Related to the problem
at hand, is another recent trend in surgical simulation,
which examines the use of image-based rendering for
realistic visualization. For instance in [5], real images
are combined with artificial specular reflections, modu-
lated by a set of reflectance maps, to simulate different
views of the endoscopic camera.

Without focus on the special needs of the applica-
tion area, further work has been carried out in gen-
eral texture generation. One approach is direct texture
synthesis on the 3D surface [30, 33, 7, 34, 36]. These
approaches used the Markov random field method of
texture synthesis [20, 3, 32]. This requires the warping
of the spatial neighborhood function over the surface
to approximate curvature. Therefore, generally only
relatively small texture structures can be reliably ap-
plied to a 3D surface with these methods. Moreover,
user interaction is needed to define a vector field over

the surface in order to polarize the texture. In any
case, these types of methods are by no means interac-
tive when it comes to modifying the texture over the
3D surface.

An alternative approach is to paste patches of the
texture directly onto the surface [19, 21, 28, 13]. While
these methods perform better than direct synthesis,
they do suffer from texture discontinuities along seams
(except for [19]). However, these can be minimized
with boundary matching or blending, or a combination
of both. Unfortunately, a drawback of these approaches
is the limited interactivity, due to the necessary recal-
culations of texture patches.

3 Texturing Framework

3.1 In-Vivo Data Acquisition

While in some application areas it is possible to com-
pletely synthesize artificial textures, this is not a vi-
able approach in surgical simulation. A ground truth
covering several aspects of visual appearance of organs
has to be obtained, which serves as input to the tex-
ture generation chain. For this reason, 10 hours of
in-vivo video taken during various hysteroscopies were
acquired. Based on this material, a texture database
was created. The images were selected to represent
different structures in the uterine cavity. Usually, high



Table 1: Excerpt of in-vivo image database.

Original image Cropped & masked

image

Metrics

• ID: 105

• Medical term: polyp

• Description: complete polyp con-

nected to uterus

• Age: postmenopausal

• Resolution: medium

• Size: 374x312

• Focus: excellent

• ID: 142

• Medical term: polyp

• Description: polyp

• Age: unknown

• Resolution: medium

• Size: 198x140

• Focus: good

resolution views of characteristic tissues were chosen,
which optimally were perpendicular to the surface and
without strong camera spotlight effects. We obtained
69 different samples that contained usable textures of
various types of tissue. These were then cropped and
masked to obtain just the desired surface regions. In
Table 1 a few categorized textures of our searchable
database are visualized.

3.2 Texture Synthesis

The next step is the synthesis of new textures based
on images of the in-vivo database. Since our training
scenarios should differ from session to session, this has
to be done in a stochastic process. Another require-
ment of this step is that the synthesized textures are
tileable, which will be necessary for the next phase.

Currently existing texture synthesis algorithms can
basically be sorted into two categories. Pixel-based ap-
proaches and patch-based methods. We decided to use
the former, obtaining the required images with a fast
non-parametric texture synthesis (FNTS) approach. It
is modified version of the multi-scale texture synthesis
algorithm presented in [20]. It is sped up with a neigh-
borhood searching scheme similar to the one proposed
in [1]. For the neighborhood cost function we use the

Manhatten distance:

Costj =

N
∑

i

{

|si − ri|
ni

I
if si is defined

Maxni

I
otherwise

(1)

where si ∈ S are pixels in source image (si may be
undefined if it is outside the image, or is masked), and
ri ∈ R are pixels in the synthetic image. The factor
ni/I equals the number of times the output pixel has
been iterated divided by the proposed number of itera-
tions per pixel. If si is undefined, then a cost, equal the
maximum possible cost, is added to the overall neigh-
borhood cost.

The cost function is calculated over a subset of sam-
pling pixels from the source image. The pixel that re-
turns the lowest neighborhood cost is chosen as the
one to transfer its color to the respective pixel in the
synthetic image. The iteration count is then incre-
mented for that output pixel. Once all output pixels
have reached their proposed number of iterations, the
synthesis process stops. The site visitation sequence
across the output pixels can be in any random order as
describe in [20].

In contrast to [1], the subset we sample from are all
pixels with a neighbor of the same color as the respec-
tive neighbor of output pixel being iterated. This is
a larger subset than proposed by [1], which results in



(a) Polyp mesh. (b) Visibility measure. (c) Distortion measure. (d) Cut seam. (e) Flattened mesh.

Figure 2: Flattening of 3D mesh for parameterization

a higher synthesis quality, but with only minimal in-
crease in computation time. The perceptual similarity
measure between the neighborhoods that was proposed
by [1] is also maintained with this approach.

Compared to patch-based algorithms(e.g. [8, 4, 12,
17], our pixel-based approach produces more stochas-
tic variations in the synthetic texture, while provid-
ing comparable results. Finally, due to its pixel-based
strategy, our method can easily cope with image mask-
ing. Using FNTS, we were able to produce a variety of
different tileable tissue textures from our database, as
seen in Figure 3.

(a) In-vivo image. (b) Cropped and masked.

(c) Synthesized texture I. (d) Synthesized texture II.

Figure 3: Texture synthesis of in-vivo texture

3.3 Mesh Parameterization

Following the texture synthesis, the 2D image now has
to be mapped to the 3D mesh of the organ. The ge-
ometry of the surgical scene is generated as part of our
framework. Since organs of any two patients will never
be alike, we use statistical anatomical models to handle

the variability of healthy human anatomy. Thereafter,
different pathological cases are artificially created by
growth processes, and added to the scene. These gives
us triangle surface meshes, to which the synthesized
textures are applied. The mesh parameterization is
carried out by cutting the 3D mesh and mapping it to
a 2D plane. Thereafter, the texture can be projected
back to the 3D surface by inverse mapping.

When deciding how to cut the mesh, one first needs
to decide which parameterization method they wish to
use. Basically mesh parameterizers fall into two cate-
gories [6]; ones that require a fixed convex boundary,
and those that do not. The ones that allow for a free
boundary typically provide reduced distortion and re-
quire fewer seams over the mesh. Of these types of
methods there are basically two that at least partially
guarantee that no triangle flips will occur. There is
angle based flattening (ABF) [26, 22], and then there
is least squares conformal maps (LSCM) [10], but as
discussed in [22], ABF performs a lot better. Alter-
natively there is the bounded-distortion method [29],
which integrates both the cutting and parameteriza-
tion into one algorithm. However, there is little control
over the placement of the seams and there tend to be
a lot of them, which makes this method comparable to
some of the texture patch pasting methods.

In this work we have chosen to use ABF [26, 22],
where the mesh cutting is done according to [24], from
which the surface is separated along existing edges.
This process is carried out according to two quality
metrics. Firstly, a visibility measure for mesh edges is
calculated. This is done, by rendering the scene from
different viewpoints and marking of visible elements.
Secondly, distortion of mesh nodes is calculated by esti-
mating the Gaussian curvature. The 3D surface is then
separated along nodes that contribute significantly to
the total mesh distortion, and minimally visible seams.

This problem is NP-Complete, however, a viable so-
lution can be obtained with the approximate minimal
Steiner tree [25]. A number of alternatives exists to
calculate the edge cost in this method. We chose to
supplement the calculation with a curvature cost as de-



scribe in [10]. The final cost for each edge is calculated
as:

ecost = |e|evisibility(1 − ecurvature)

This helps to place cuts along edges of high curvature,
in which texture artifacts are less visible.

After cutting, the mesh is ready for flattening and
texture parameterization. We applied angle based flat-
tening with the SuperLU method [22]. However in
our case we implemented the matrix variation as de-
scribe in [35]. This creates a simpler matrix, but it can
become ill-conditioned. Employing line searching and
backtracing to the Newton-Raphson method does well
in circumventing this problem.

After solving for the 2D planer angles, vertices need
to be extrapolated to a 2D plane. The traditional
method of growing the mesh by using the angles to
find the 3rd vertex in each triangle can quickly become
unstable from a lack of numerical precision. There-
fore we used the global optimizer according to [31].
Finally, since angle based flattening does not preserve
edge lengths, we implemented a mesh smoothing algo-
rithm to reduce the length distortion [23]. An example
of this process for a mesh of a polyp is shown in Fig-
ure 2.

3.4 Texture Blending

In parameterizing the 3D surface mesh, it was cut and
flattened. Then, a texture was applied to the flattened
mesh, which thereafter was backprojected onto the 3D
surface. With this method a texture discontinuity ex-
ists along the cut seam of the mesh. Although number,
length and visibility of the seams have been minimized,
these discontinuities still create unwanted visual arti-
facts. To reduce these artifacts, we apply an enhance-
ment step based on alpha blending.
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(a) 3D cylinder.

(b) Flattened cylinder.

Figure 4: Blending across mesh boundaries.

Given a 2D planar mesh of a 3D surface, and a table
of matching edges along the seams, it becomes possible

(a) Artificial textures.

(b) Synthesized organ textures.

Figure 5: Blending across object boundaries.

to precompute the alpha blending parameters. This is
done with duplicate triangles along the seams that con-
tain the extrapolated texture coordinates from across
the seam. Vertices directly on the seam are given an al-
pha value of 0.5, while the rest are incrementally decre-
mented as the overlayed triangles progress away from
the edge. Alpha blending is then easily performed in
OpenGL by setting the material properties of each ver-
tex of the overlayed triangle to the corresponding alpha
value.

Consider, for example, Figure 4. Given the texture
coordinates p1, p2, and p3 of the current triangle, and
the texture coordinates q1 and q2 of the opposite tri-
angle where the 3D vertices of p1 and p2 correspond to



(a) Myoma scene. (b) Another myoma scene.

Figure 6: Similar geometries with different textures.

q1 and q2 respectively, then the 3rd coordinate q3 of
the triangle to be overlayed onto the current triangle
can be calculated as follows:

v = p1 − p2, u = q1 − q2, w = p3 − p1

vn = v/|v|, un = u/|u|

vt[0] = −vn[1], vt[1] = vn[0], vt[2] = 0.0

ut[0] = −un[1], ut[1] = un[0], ut[2] = 0.0

q3 =
(

|u|
|v| ((w · vn)un + (w · vt)ut)

)

+ q1

The discussion so far has only focused on texturing
of a single mesh. However, in our scene generation,
a number of different structures exist, mainly healthy
anatomy and neoplasms. In the case of hysteroscopy,
we artificially grow myomas and polyps in the uterine
cavity. Due to the differing genesis of these objects,
they usual have different visual appearance. Therefore,
the process above has to be carried out for these ob-
jects separately, which makes the handling of the mesh
interfaces necessary. To this end, we have developed a
blending approach between object seams.

Blending across objects is a lot more straight for-
ward than the one within an object described above.
Basically we define our complete scene with a set of
submeshes, where each submesh encapsulates the sur-
face covered by just one texture. However for each sub-
mesh we also include an overlap region between meshes.
These submeshes are then processed individually and
texture is applied. The overlap region contains the nec-
essary information to apply alpha blending between ob-
jects. It is easy to make this overlap region quite large,

which improves the blending across different textures,
as shown in Figure 5.

3.5 Integration into Hystersoscopy

Simulator

The texturing framework described above has been in-
tegrated into our model generation process. This now
enables us to generate varying training scenes, includ-
ing geometries and visual appearance, as well as vessel
structures and tissue parameters. In Figure 6 two ex-
amples textured with our method are presented.

4 Conclusion

To acquire surgical skills, it is highly desirable that the
training scene is different from session to session - just
like in real practice. This includes geometries, as well
as visual appearance. To this end, we have developed
an automatic method for generating textures for our
training scenarios.

We have presented a method for synthesizing 2D
textures based on in-vivo images, and mapping these
to 3D surfaces of organ geometries. Although tex-
ture synthesis is usually performed on a 2D lattice,
our approach allows the texturing of 3D surfaces. The
method enables the mapping of large scale textures to
complex shapes without significant distortions. A mi-
nor drawback of the algorithm is the occurrence of dis-
continuities along seams, however, we alleviate this by
blending across the object interfaces.



As the texture mapping is performed via a complete
mesh parameterization, the whole texturing framework
is interactive. A texture can be scaled, rotated, or
translated across the 3D surface interactively. Alter-
natively the texture can be simply replaced. This all
can be done with syncronous blending. The presented
texturing framework makes it easy to design and create
individual texturing scenarios to meet the needs of the
surgical training simulator.
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