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Strong Markov Random Field Model

Rupert PagetMember, IEEE

Abstract

The strong Markov random field (strong-MRF) model is a suldei@f the more general MRF-
Gibbs model. The strong-MRF model defines a system whose iieMarkovian with respect to a
defined neighborhood and all sub-neighborhoods are alskdvian. A checkerboard pattern is a perfect
example of a strong Markovian system. Although the strongkighgan system requires a more stringent
assumption about the field, it does have some very nice maitiieah properties. One mathematical
property, is the ability to define the strong-MRF model widspect to its marginal distributions over
the cliques. Also a direct equivalence to the Analysis-afiance (ANOVA) log-linear construction can

be proved. From this proof, the general ANOVA log-linear stouction formula is acquired.

Index Terms

Markov processes, Contingency table analysis, Nonpararetatistics, Texture, Model develop-

ment

. INTRODUCTION

MARKOVIAN system is most soundly modeled as a Gibbs distidou[1], [2]. If the
A Markovian system can not be modeled by an equivalent Gilgigllition, then the MRF
will not have a properly defined likelihood distribution [However, in order to obtain the correct
Gibbs distribution for a particular MRF, the neighborhogdtem needs to be known, and the
“potential functions” for each “clique” are required. Ap&rom a simple binary auto-model [3],
there is no exact solution to these parameters. In which, @aseximum likelihood estimation
(MLE) is required [4], [5].

The process to estimate the maximum likelihood is to firstosleoa parameterized auto-
model [4], and then perform updates on those parameters regipect to the MRF that the
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parameterized model generates. The model is slowly refimgd the marginal distributions
of the generated field is comparable with the equivalentidigions of the training field. An
alternative approach, as presented in this paper, is to Inteel®1RF explicitly as a combination
of the marginal distributions. The advantage of such anagytr is that the texture can be quickly
modeled from a training field as it bypasses the need for MLEotAer advantage is that the

MRF model is not constrained by the functionality of arbiraredefined potential functions.

In order to bypass the MLE and model the MRF as a combinatidneomarginal distributions,
one major constraint is required of the MRF; the MRF needsetofta subclass of MRFs known
as “strong-MRFs” as defined by Moussouris [6]. In this susglahe conditions on the MRF
are a lot stronger. With a standard MRF, the state of a siteeimell as being conditionally
dependent on the states of its neighboring sites, giventacpiar neighborhood function. In the
strong-MRF case we have the extra condition that if the sthgeneighboring site is undefined,
then the state of the site of concern is still only conditipndependent on those neighboring

sites that are defined. In the case of a standard MRF, thisnargewill not be true.

At first glance, the extra constraint imposed by the strorigFRMnay not seem that restrictive.
However, in a standard MRF, short range correlations modayethe MRF can imply or induce
long range correlations in the field. By the nature of thergjrRF’s definition the induced
long range correlations are severely limited. This has tagped the strong-MRFs being used to
model texture. In fact most non-parametric MRF techniqusssthe strong-MRF model without
drawing reference to it. If sites with undefined states acermnodated in the synthesis algorithm
without modifying the neighborhood function, then a straviBF is implied. To get around the
limiting behavior of the strong-MRFs, either a large neighitood is used [7], [8], [9], or a

multi-scale approach is used [10].

Simplifying complex mathematical problems by assuming =imaedegree of independence
is a common approach to solving intractable problems, eveanwthere is no basis for the
assumption. Likewise, we have assumed an extra degree dftiooal independence so as to
simplify the MRF model to a strong-MRF model. By demonstrgtithe equivalence between
the strong-MRF model and the ANOVA log-linear construct{dd], [12], we are able to use
the estimation processes developed for the ANOVA log-lineanstruction to calculate the
probability distribution for the strong-MRF model. In rety Moussouris’s [6] strong-MRF

formula gives the general formula for the ANOVA log-lineamstruction.
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[I. STANDARD MARKOV RANDOM FIELD MODEL

Denote a lattice as a set of sit¢s € S}. For each sites € S define a random variable
X; = zs wherex, € A = {0,..., L — 1}. A particular configuration of the lattice is given as
{Xs = z5,s € S} which will be abbreviated t&X = x. The configuration spacéor the variable
x is denoted by) =[] .o A

Let IT be the Gibbs (joint) probability measure énwith TI(X = x) > 0 V x € (2. Besag [1]
proved that a Gibbs (joint) distributiod(x) is uniquely determined by its Local Conditional
Probability Density Function (LCPDR)I(X, = z4| X, = x,,r # s), which we will rewrite as
y(xs]x(5)), s € 9, x € Q wherex,) = {x,,r # s}.

The property of an MRF is that the LCPDF is defined with respeet neighborhoodV, C S
of the sites.

I (2s|x(5)) = P(xs|z,, 7 € N) VxeO,seS (1)

The set of neighborhoods is timeighborhood systemienoted as\V' = {N, C S,s € S}. Given

a neighborhood systenV, a clique is a setC' C S if every pair of distinct sites inC' are
neighbors, orC' is a singleton with just one site. L&t denote the set of cliques defined on
S with respect taV, and letC, denote thdocal clique setfor a neighborhoodV, such that
C,={CelC,seC}.

The Hammersley-Clifford theorenwhich is also referred to as tHdRF-Gibbs equivalence
theorem and proved in [1], [13], [14], [6], gives form to the LCPDF ss to define a valid
joint distributionTI(x) by expressing the MRF in terms df -potentialsV(x) defined on the
cliquesC € C; [2], [13],

P(xg|z,,r € N;) = Zisexp { Z VC(X)} ; (2)

Ccecs
where Z, is the local normalizing constantZ, = >, ., P(\z,,r € N;). The MRF-Gibbs

equivalence theorem implicitly requires the neighbortsoegstem to be symmetrical and self
similar for stationary homogeneous MRFs.
Given a neighborhood systeM and its corresponding set of cliqués an A -potentialV is
defined such that,
Vo(x) =0 if CécC. 3)

A representation for theV'-potential V' is given by Grimmett [14] and Moussouris [6], but a

thorough proof is given by Geman [13]. Ay > 0 is a Gibbs distribution with respect to
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N -potentials,

Vo(x) = > (1)1 og IT(x"), Vx e, seS. (4)
c'cc

Moreover, for any element € C,
Vo(x) = > (1)1 og I, (2" [x()), Vx€Q,s€8,5€C (5)
c'cC

whereC,C" € C, and forA C S,

. seA
—(ehsesy,  at={ "7 (6)
0, s¢&A.

The N -potential V' representation of Eq. 4 is obtained via the Mobius invergleeorem [15],
for which an elegant proof is given by Moussouris [6].
Theorem 1 (Mbius inversion theorem)For arbitrary real functiong” and G defined on the
subsetsd, B and C' of some finite set.
=) G(B) iff G(B) =Y (-1)PF(C) VA, B 7)
BCA CCB

or, equivalently,

2: E: )IEEIC (o) (8)

BCACCB
where|A| = number of sites in set.
A factorization of the joint probability distributiohl(x) can be obtained from Mobius inver-
sion theorem[15] (see Moussouris [6]), giving,
logTI(x) = >~ (=) 1%Nog IT(x“), where (C,C'eC 9)
CeccC'cc
From Eqg. (9) Moussouris [6] gives the following decompasiti
=[]  where  nge = (-1 Y (-1)/ (10)
ceC ccorec
where) ... is performed over the sets'. A similar decomposition can be obtained for the
LCPDF of Eg. (2), as shown by Paget [16], giving,

I (2x) = [ (Ma(aalxE)) where  nec= (-1 Y (- @11)

CeCs CCC’eCs
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[1l. STRONG MARKOV RANDOM FIELD THEORY

The decomposition formula of Eq. (11) is tantalizing in thetfthat it gives a factorization of
the neighborhood probability into clique probabilitiest binfortunately these clique probabilities
are still defined over the whole neighborhood. Thereforesghelique probabilities are still
intractable. What would be more useful is if the factoriaatof the neighborhood probability
could be defined in terms of clique probabilities that werkngel just over their individual clique
domain. That is, a factorization of the neighborhood prdignto lower order functions as in
the marginal distributions that can be empirically evatdafrom a random field.

It was Moussouris [6] who first proposed that the Markoviastegn could be simplified by
imposing stronger conditions on the LCPDF. The strong-MBsuees conditional independence
between non-neighboring sites for any subsetSofThis is a much stronger assumption than
is made for a standard MRF which defines a site as being condlty independent upon its
non-neighboring sites given all of the neighboring sitdse Tifference between the two models

can be seen in their mathematical definitions of Egs. (12)(aBj
MRF condition, Eq. (1)
O, (x|, r#5) = P(ug|r.,r €Ny, VxeQses (12)
Strong MRF condition
Hy(zs|z,,r #£s,r€ ACS) = P(asla,,re NyNA), VxeQseS (13)
The strong-MRF condition may be expressed in the form of tilewing identity. Denote
the marginal probabilityP?(x4) = P(zs,s € A), where A C S. Given two sitess,t € S for

which neither is a neighbor of the othee.,t ¢ N, < s ¢ N,, and givens,t ¢ B C S, then

the strong-MRF condition of Eq. (13) can be expressed as,

P(zg|lxy,xp) = Pl(xslzp)

P(Xpysyt) P (XB1s)

P(xpy)  Plxs)

The notationA + s is used to denote a set of sitésplus the sites, or alternativelyA — s

(14)

denotes the same sdtexcluding the sites.
Proposition 1: Given a neighborhood systei(, the LCPDF of a strong-MRF may be de-
composed as,

log P(z|z,,r € No) = > > (=1)/ 1 og Pa|xcr—s) (15)

CeCs seC'CC
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or,

log P(zs,xr, 7 € Ny) = Z Z (=111 og P(x¢) (16)

CeCs seC'CC
where) ... is performed over the sets’. Through Moussouris’s [6] conversion, Egs. (15)

and (16) maybe re-expressed as,

P(zy|z,,r € Ny) = [] Plalxc_.)"ec, (17)
CeCs
and,
P(zy,zp,r € N) = [] Plxc)mee, (18)
CeCs
respectively where,
ne,o = (DI Y (=Dl (19)
CCC"eCs

Proposition 1 is proved via two separate mathematical coctsdns. The first proof is pre-
sented in Appendix I, and is based on the similar proof by @réati [14] and Moussouris [6]
for the equivalence of a standard MRF and a Gibbs distribuflthne second proof is presented
in Appendix Il, and is based on the ANOVA log-linear constroie [11], [12] for testing inde-
pendence in a distribution. As both mathematical constrostare used to prove Proposition 1,
the constructions are equivalent in terms of the strong-MRF

An example of a strong-MRF that is easy to conceptualizéaxheckerboard pattern. To show
that this pattern can be modeled as a strong-MRF, we needote stat Eq. (18) holds. Given
the nearest-neighbor neighborhood the empirical estsraftall the marginal and neighborhood
probabilities equal either 0 or 0.5. It is easy to see thagmithese values of the probabilities
that Eq. (18) holds. The field is still random, as two posssgitges of the field exist, however

there also exist forbidden states.

IV. ESTIMATION OF THE STRONGLCPDF

Bishopet al. [11] did not derive the direct estimate Eq. (18) or the gelnegaiation for the
ANOVA log-linear construction Eq. (33), but they did provader what conditions Eqg. (33) is
valid. As the ANOVA log-linear construction is equivalemt the strong-MRF model, we may
use the same conditions to determine when the direct egtiofdEq. (18) is valid. Given a set

of cliques with non-zero potentials over which Eq. (18) ikcatated, the direct estimate is valid
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when these cliques do not form a loop, see Biskb@l. [11] page 76 for details. Therefore

Eqg. (18) is only valid for the auto-model of the strong-MRF.

HT‘GNS P(x& xT)
P(xs)|/\fs|fl

P(zg,x.,r € Ny) = (20)

If higher order marginal distributions are desired, theitamtive proportional fitting technique
may be used. Fienberg [12] and Bishepal. [11] described the iterative proportional fitting
technique for a distribution defined in three dimensions.eiagalized version of the technique
is presented by Paget [16]. A problem with the technique & this memory intensive and
computationally expensive.

Using the marginal distributions of a field to define the str®&iRF allows non-parametric
estimation to be applied. This usually implies Parzen dgrestimation [17]. However in using
Eqg. (20) to sample\; € A, smoothingP(zs, x,.) along thex, axis is probably not required or
desired. Therefore substituting(zs, z,,) = P(x.|zs)P(z,) into Eq. (20) we obtain;

P(zg, ., € Ny) H P(x,|x) (21)
T‘GNS

To make the Parzen density estimateRtfr,|z,) quick to calculate, a box kerné{' (z) with a

smoothing parameter df is used, whereby;

<h >0
K(z) = ath ol < where “ (22)
0, else 6 >0

This means that only sites € S for which |z, — .| < h for some\, € A are required, and
ses 5(1‘5

A )y(z — A), 7 € Ny whered(z) = 1 for |z| = 0 else 0, andy(z) = 1 for |z| < h else O.
Using the kernel of Eq. (22), the direct estimate of Eq. (24¢dmes,

these sites can be pre-listed into an index. Define- Y _d(z, — A,) andn, = >

P(zy = A, 2 = A\py7 € N,) = |7;5|H ! {n +ﬁ} (23)
rEN

whereZ, =3, .\ K(x, — ),) is a constant ifo = 0. As Eq. (23) implies only sampling from
As € A that are contained in the training field, neighborhood walue r € N, will also be

found in the training field. Therefore using a smoothing pseter of . = 0 is not a problem.

This is the same argument as used by Ashikhmin [18].
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(9) (9.1) (h) (h.2)

Fig. 1. VisTex textures: (a-h) OriginaR8 x 128 pixel image; (a.1-h.1) synthesiz@86 x 256 pixel image by the non-parametric

strong-MRF model using the direct estimate witl3 a 3 neighborhood.
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V. SYNTHESIS

To synthesize a texture we need to sample from the LCPDF,|z,,r € N,) to update a
single site of the synthetic texture. This is repeated tikezly over the synthetic texture until the
field stabilizes. As we can use the direct estimate technigudbtain a non-parametric estimate
of the LCPDF, the synthesis algorithm by Paget and Longgiéff was used.

Fig. 1 presents 8 VisTex textures [19] which are synthesfrat the non-parametric strong-
MRF auto-model using the direct estimate witl3a 3 neighborhood. The visual similarity
of the synthesized textures compared to the originals, detrates that these textures can be
modeled from just second order statistics.

The synthesis algorithm was performed on 166 VisTex test{8]. On a Sun-Blade 100: 500
MHz, 256 MBytes RAM, the average synthesis time fa58 x 256 pixel image was 48 minutes
with a standard deviation of 51 minutes. The synthesis tesidlFig. 1, and the synthesis times
are given for just 2 iterations over the whole image. Moretlsgsis results plus source code is
provided in [20].

VI. CONCLUSION

Low order statistical models are better at presenting mtwehastic versions of synthetic
texture, and are better at classification [21], [22], [23)eTstrong-MRF model is not a general
model and in this particular implementation will only praguwisually pleasing results for certain
textures. Generally, as the theory implicitly indicatdgs tmodel will only work for stationary
homogeneous textures with limited long range correlatibitavever from the synthetic textures
presented, it is clear that a surprising variety of textwas be modeled from just second order
statistics. This gives credence to using second order raddeklassification.

For supervised classification, the strong-MRF model hasyebtbeen shown to perform
better than the standard second order models like the fr&&sdor, GLCM, or Gaussian MRF
models [21]. For texture synthesis, other non-parametrRFMmodels are more pliable to a
wider variety of textures [7], [10], [9].

The advantage of the strong-MRF model is that it can be useatdoire a non-parametric
model of any statistical order directly from any stationdmymogeneous random field. The
non-parametric strong-MRF model is not constrained by timetionality of arbitrary predefined

potential functions. These advantages make it an excelémidate for the application of texture
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recognition in images that contain other textures of unkmangin [22]. However, it is hoped
that this model will light the way to finding the optimal modkht will give realistic realizations

of a texture while at the same time being used for its clasgiio.

APPENDIX |

PROOF 1 OF PROPOSITION1
This proof relies on the Mobius inversion theorem [15] EA), &nd is based on Grimmett's [14]
and Moussouris’s [6] equivalence proof for a standard MR#& arGibbs distribution. For any
setsA, B C S, define the potential®z of the strong-MRF such that;

log P(x4) = Y Vis(xp), (24)
BCA

From the Mobius inversion theorem [15] Eq. (7), then,

Va(xp) = > _(~=1)/P%og P(xc), Vxe (25)
CCB
Moreover, for any elemert € B,
Ve(xp) = Z (—1)B-1Nog P(x¢) + Z (—1)BI=I€og P(x¢)

seCCC s¢CCB

= ) (=1)!PF%log P(xc) — log P(x¢-s))
seCCB

= ) (=)o P(ayfxc ). (26)
seCCB

Given thatx is defined on a strong-MRF with respectA6, thenV is a strong\ -potential iff
Ve(xp) =0V B ¢C. ChooseB ¢ C, thends,t € B such that ¢ N, & s € N,.

V(xp) = Y (=1)""%log P(xc)

CcCB
= > ()P Mg Plxe) £ Y ()P g Plxen) +
CCB—s—t CCB—s—t
Z (—l)lBl_‘CHI log P(xc+t) + Z (—1)|B|_‘C+S+t| log P(Xcs+t)
CCB—s—t CCB—s—t
_ Z (—1)1BI-1 g [P(XC)P(XC+s+t)]
OCB—s—t P(Xcs) P(x04t)
= 0. (27)

In obtaining Eq. (27) the strong-MRF identity of Eq. (14) sed. Therefore a strong-MRF may
be expressed with respect to thé-potentials of Eq. (25) or Eq. (26). However given the fact
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that hereC' could be the null set, Eq. (27) suggests that the autoctioelfunction could be
used to determine the neighborhood size.
As Eg. (25) and Eq. (26) have been shown to\bgpotentials, we can now use them to prove

Proposition 1. Consider a sitec S, then the strong-LCPDF may be expressed as;

P(zy|z,,r e Ny) = Pf()ixs)) = exp Z Vo(xe) — Z Vc(Xc)]
S—s cec s¢CeC
= exp [ Z VC(XC) = exp Z Vc(Xc)]
seCeC CeCs
log P(zg|z,,m € Ny) = Z Z (_1)|C\—|C'| log P(ws|xcrs) (28)

CeCs seC’'CC
Where in the above equation, thié-potential Eq. (26) is used since all the cliquése C,
contain the sites. This proves the first part of Proposition 1, Eg. (15). Theosécpart of
Proposition 1, Eq. (16) is proved by applying Mobius invenstheorem [15] Eqg. (8) to Eq. (25)
for the set of sitesV, + s C S;

log P(zs,x,, 7 € Ny) = Z Z (=111 og P(x¢)

CCNs+sC'CC

- T { X e g e + 3 0 s |

CCNs C'CC+s c'cce
- > {Z<—1>C+S'—C’+S log P(xcris) + 3 (1)1 log P(xcr)+
CCN c'ce c'ce
S (1) og P(x@)}
c'ce
= 30 3 (-1 og Plxry)
CCN; C'CC
= 33— og P(xcr) (29)
CCCs seC'CC

Finally, to obtain Eq. (17) and Eq. (18) of Proposition 1 weynadserve that both Eq. (28)
and Eq. (29) have the correct Mobius set decomposition reipect to the set,. Even though
the sites is included in the decomposition, it is included in all cleguand therefore does not
compromise the Mobius decomposition over the/¢gtTherefore the Moussouris [6] conversion
can be applied to both Eg. (28) and Eg. (29) over the set of diteto obtain Eqgs. (17) and
(18) respectively.
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APPENDIX Il

PROOF 2 OF PROPOSITION1

This proof is based on the ANOVA log-linear construction][112] for testing independence
in a distribution. In ANOVA-type notation, the probabilify(x 4) is decomposed into its marginal

distributions in terms of thgeneral log-linear constructiofil1]:
log P(x4) Z Up(xp). (30)

From the Mobius inversion theorem [15] Eq. (7), we have:

Us(xp) = Y _(=1)/""log P(xc) (31)
CCB
giving,
log P(x4) Z Z DIB=Cog P(x¢) (32)
BCACCB

This is the general formula for the ANOVA log-linear congtiion. The summation is performed
over all setsB C A for which the potential functiod/z(xz) # 0. Moussouris’s [6] conversion

gives,

= [ Pxe)™e, nac = (DI > (—=1)F (33)

CCA CCBCA
Although this formula was proposed by Moussouris for thersifMRF, the formula can also
be applied to the study of ANOVA for contingency tables. Ih@ known whether this has been
made apparent to the contingency tables community.
In the ANOVA log-linear construction/, is the grand mean of the logarithmic probabilities

log P(ya), ya € Qa:
Un(x0) = |QA| D> log P(ya). (34)

YA€EQA
The rest of the potential function$z(xz), B C A, represent successive deviations from the
grand mearl; such that,

Z Uc(xc) L Z log P(xgya_B)- (35)

CCB KIA B|YA—B€QA—B

The equivalence between the ANOVA log-linear constructowl the strong-MRF model is

proved by proving that/ is a strong\V -potential. Given thak is defined on a strong-MRF with
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respect ta\V, thenU is a strong\ -potential if Uz(xg) = 0V B ¢ C. ChooseB ¢ C, then
ds,t € B such thatt ¢ N, & s ¢ N;. From Eq. (35),
1

> Uclxc) = s Y. log P(xpya p)
CCB A=B YA-BEQA_B
1
Up(xp) = o Z log P(Xpya-B) ZUC Xc)
A-B YA-BEQA_B ¢cB
1
— o | Z log P(xpya_B) — Z Uc(xc) —
A*B yA—BeQA B CCB S
Z Uc(xc) + Z Uc(xc) Z Ucystt(Xcrstt)
CCB-t CCB—s—t CCB—s—t
1
Z Ucysit(Xotstt) = 0 | Z log P(Xpya-B) Z Uc(xc)
CCB—s—t A-B YA-BEQA_B CCB-s
> Uelxe)+ Y Uclxo)
CCB—t CCB—s—t
1
= 5 Z log P(xpya_B) —
| A_B| YA-BEQA_B
1
ﬁ Z log P(XstYAfBJrs) -
A=B+s YA-B+s€QA_Bts
1
ﬁ Z lOg P(XB_tyA_B+t) +
A-B+t YA-B+t€QA_Bit
1
h Z 108; P(XB—s—tYA—B+s+t)
A-Btstt YA-B+s+t€QA-_B1stt
1 1
" T, 2 lsPleevas) -
A=B sti YA-B+s+t€QA_Bistt
1 1
O, , 2, )
A—B+s t YA-Bts+t€EQA_Btstt
1 1
ﬁm Z lOg P(XB_tyA_B+t) +
A=B+t S YA B1stt€QA—Btstt
1
ﬁ Z log P<XstftYAfB+s+t)
A=Btstt YA-B+s+t€QA_Bystt
_ 1 Z [P XBYA— B) (XB—s—tYA—B+s+t):|
14— Bttt

YA-Bts+t€2A-Btstt
= ; Z lOg |: $5|XB sYA— B) (y5|XB_S_tyA_B+t):|
|QA—B+S+t| YA—B4s+t€EQA_Btstt |XB sYA— B) ($5|XB—S—tYA—B+t)

~ 0 (36)

(
P(Xp-sYa-B+s)P(XB_tyA-B+t)

(

(y

"U"U
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To obtain Eg. (36), the strong-MRF identity Eq. (14) was usedr B = () we have from

Eq. (36),Us;+(xs+¢) = 0. AssumelUg(xp) = 0 for all |B| < n, then from Eq. (36) foiB| =n

we haveUp(xp) = 0. By the principle of mathematical inductiotiz(xg) =0V B ¢ C.
Updating Eq. (32) for a strong-MRF, the ANOVA log-linear abruction may now be rewritten

as,
log P(zg, ., 7 € Ny) = Z Z (=1)IC1 10 P(x¢r) (37)
CCN +s,C'CC
ceC
As in the derivation for Eq. (29), Eq. (37) can be re-exprdsss
log P(zs, ., 7 € Ny) = Z Z (=11 0g P(x¢r) (38)
CCCs seC'CC

Therefore via the ANOVA log-linear construction, Eq. (18)Rroposition 1 is proved. The rest
of Proposition 1 is subsequently proved via the same desivaitas used in the first proof of

Proposition 1.
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