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Strong Markov Random Field Model

Rupert Paget,Member, IEEE

Abstract

The strong Markov random field (strong-MRF) model is a sub-model of the more general MRF-

Gibbs model. The strong-MRF model defines a system whose fieldis Markovian with respect to a

defined neighborhood and all sub-neighborhoods are also Markovian. A checkerboard pattern is a perfect

example of a strong Markovian system. Although the strong Markovian system requires a more stringent

assumption about the field, it does have some very nice mathematical properties. One mathematical

property, is the ability to define the strong-MRF model with respect to its marginal distributions over

the cliques. Also a direct equivalence to the Analysis-of-variance (ANOVA) log-linear construction can

be proved. From this proof, the general ANOVA log-linear construction formula is acquired.

Index Terms

Markov processes, Contingency table analysis, Nonparametric statistics, Texture, Model develop-

ment

I. INTRODUCTION

AMARKOVIAN system is most soundly modeled as a Gibbs distribution [1], [2]. If the

Markovian system can not be modeled by an equivalent Gibbs distribution, then the MRF

will not have a properly defined likelihood distribution [1]. However, in order to obtain the correct

Gibbs distribution for a particular MRF, the neighborhood system needs to be known, and the

“potential functions” for each “clique” are required. Apart from a simple binary auto-model [3],

there is no exact solution to these parameters. In which case, a maximum likelihood estimation

(MLE) is required [4], [5].

The process to estimate the maximum likelihood is to first choose a parameterized auto-

model [4], and then perform updates on those parameters withrespect to the MRF that the

Manuscript received June 24, 2001; revised October 11, 2002.

R. Paget is with the Computer Vision Group, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland. E-mail:
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parameterized model generates. The model is slowly refined until the marginal distributions

of the generated field is comparable with the equivalent distributions of the training field. An

alternative approach, as presented in this paper, is to model the MRF explicitly as a combination

of the marginal distributions. The advantage of such an approach is that the texture can be quickly

modeled from a training field as it bypasses the need for MLE. Another advantage is that the

MRF model is not constrained by the functionality of arbitrary predefined potential functions.

In order to bypass the MLE and model the MRF as a combination ofthe marginal distributions,

one major constraint is required of the MRF; the MRF needs to be of a subclass of MRFs known

as “strong-MRFs” as defined by Moussouris [6]. In this subclass, the conditions on the MRF

are a lot stronger. With a standard MRF, the state of a site is defined as being conditionally

dependent on the states of its neighboring sites, given a particular neighborhood function. In the

strong-MRF case we have the extra condition that if the stateof a neighboring site is undefined,

then the state of the site of concern is still only conditionally dependent on those neighboring

sites that are defined. In the case of a standard MRF, this in general will not be true.

At first glance, the extra constraint imposed by the strong-MRF may not seem that restrictive.

However, in a standard MRF, short range correlations modeled by the MRF can imply or induce

long range correlations in the field. By the nature of the strong-MRF’s definition the induced

long range correlations are severely limited. This has not stopped the strong-MRFs being used to

model texture. In fact most non-parametric MRF techniques use the strong-MRF model without

drawing reference to it. If sites with undefined states are accommodated in the synthesis algorithm

without modifying the neighborhood function, then a strong-MRF is implied. To get around the

limiting behavior of the strong-MRFs, either a large neighborhood is used [7], [8], [9], or a

multi-scale approach is used [10].

Simplifying complex mathematical problems by assuming an extra degree of independence

is a common approach to solving intractable problems, even when there is no basis for the

assumption. Likewise, we have assumed an extra degree of conditional independence so as to

simplify the MRF model to a strong-MRF model. By demonstrating the equivalence between

the strong-MRF model and the ANOVA log-linear construction[11], [12], we are able to use

the estimation processes developed for the ANOVA log-linear construction to calculate the

probability distribution for the strong-MRF model. In return, Moussouris’s [6] strong-MRF

formula gives the general formula for the ANOVA log-linear construction.



PAGET: STRONG MARKOV RANDOM FIELD MODEL 3

II. STANDARD MARKOV RANDOM FIELD MODEL

Denote a lattice as a set of sites{s ∈ S}. For each sites ∈ S define a random variable

Xs = xs wherexs ∈ Λ
.
= {0, . . . , L − 1}. A particular configuration of the lattice is given as

{Xs = xs, s ∈ S} which will be abbreviated toX = x. Theconfiguration spacefor the variable

x is denoted byΩ =
∏

s∈S Λ

Let Π be the Gibbs (joint) probability measure onΩ with Π(X = x) > 0 ∀ x ∈ Ω. Besag [1]

proved that a Gibbs (joint) distributionΠ(x) is uniquely determined by its Local Conditional

Probability Density Function (LCPDF)Π(Xs = xs|Xr = xr, r 6= s), which we will rewrite as

Πs(xs|x(s)), s ∈ S,x ∈ Ω wherex(s) = {xr, r 6= s}.

The property of an MRF is that the LCPDF is defined with respectto a neighborhoodNs ⊂ S

of the sites.

Πs(xs|x(s)) = P (xs|xr, r ∈ Ns) ∀x ∈ Ω, s ∈ S (1)

The set of neighborhoods is theneighborhood systemdenoted asN = {Ns ⊂ S, s ∈ S}. Given

a neighborhood systemN , a clique is a setC ⊆ S if every pair of distinct sites inC are

neighbors, orC is a singleton with just one site. LetC denote the set of cliques defined on

S with respect toN , and letCs denote thelocal clique setfor a neighborhoodNs such that

Cs = {C ∈ C, s ∈ C}.

The Hammersley-Clifford theorem, which is also referred to as theMRF-Gibbs equivalence

theorem, and proved in [1], [13], [14], [6], gives form to the LCPDF soas to define a valid

joint distributionΠ(x) by expressing the MRF in terms ofN -potentialsVC(x) defined on the

cliquesC ∈ Cs [2], [13],

P (xs|xr, r ∈ Ns) =
1

Zs

exp

{

∑

C∈Cs

VC(x)

}

, (2)

where Zs is the local normalizing constantZs =
∑

λs∈Λ P (λs|xr, r ∈ Ns). The MRF-Gibbs

equivalence theorem implicitly requires the neighborhoods system to be symmetrical and self

similar for stationary homogeneous MRFs.

Given a neighborhood systemN and its corresponding set of cliquesC, anN -potentialV is

defined such that,

VC(x) = 0 if C 6∈ C. (3)

A representation for theN -potentialV is given by Grimmett [14] and Moussouris [6], but a

thorough proof is given by Geman [13]. AnyΠ > 0 is a Gibbs distribution with respect to
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N -potentials,

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Π(xC′

), ∀x ∈ Ω, s ∈ S. (4)

Moreover, for any elements ∈ C,

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Πs(x
C′

s |xC′

(s)), ∀x ∈ Ω, s ∈ S, s ∈ C (5)

whereC, C ′ ∈ C, and forA ⊂ S,

xA = {xA
s , s ∈ S}, xA

s =







xs, s ∈ A

0, s 6∈ A.
(6)

The N -potentialV representation of Eq. 4 is obtained via the Möbius inversion theorem [15],

for which an elegant proof is given by Moussouris [6].

Theorem 1 (M̈obius inversion theorem):For arbitrary real functionsF andG defined on the

subsetsA, B andC of some finite set.

F (A) =
∑

B⊆A

G(B) iff G(B) =
∑

C⊆B

(−1)|B|−|C|F (C) ∀A, B (7)

or, equivalently,

F (A) =
∑

B⊆A

∑

C⊆B

(−1)|B|−|C|F (C) (8)

where|A| = number of sites in setA.

A factorization of the joint probability distributionΠ(x) can be obtained from Möbius inver-

sion theorem[15] (see Moussouris [6]), giving,

log Π(x) =
∑

C∈C

∑

C′⊆C

(−1)|C|−|C′| log Π(xC′

), where C, C ′ ∈ C (9)

From Eq. (9) Moussouris [6] gives the following decomposition,

Π(x) =
∏

C∈C

Π(xC)nSC where nSC = (−1)|C|
∑

C⊆C′∈C

(−1)|C
′| (10)

where
∑

C⊆C′∈C is performed over the setsC ′. A similar decomposition can be obtained for the

LCPDF of Eq. (2), as shown by Paget [16], giving,

Πs(xs|x(s)) =
∏

C∈Cs

(

Πs(xs|x
C
(s))

)nCsC where nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′| (11)
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III. STRONG MARKOV RANDOM FIELD THEORY

The decomposition formula of Eq. (11) is tantalizing in the fact that it gives a factorization of

the neighborhood probability into clique probabilities, but unfortunately these clique probabilities

are still defined over the whole neighborhood. Therefore these clique probabilities are still

intractable. What would be more useful is if the factorization of the neighborhood probability

could be defined in terms of clique probabilities that were defined just over their individual clique

domain. That is, a factorization of the neighborhood probability into lower order functions as in

the marginal distributions that can be empirically evaluated from a random field.

It was Moussouris [6] who first proposed that the Markovian system could be simplified by

imposing stronger conditions on the LCPDF. The strong-MRF assumes conditional independence

between non-neighboring sites for any subset ofS. This is a much stronger assumption than

is made for a standard MRF which defines a site as being conditionally independent upon its

non-neighboring sites given all of the neighboring sites. The difference between the two models

can be seen in their mathematical definitions of Eqs. (12) and(13).

MRF condition, Eq. (1)

Πs(xs|xr, r 6= s) = P (xs|xr, r ∈ Ns), ∀ x ∈ Ω, s ∈ S (12)

Strong MRF condition

Πs(xs|xr, r 6= s, r ∈ A ⊆ S) = P (xs|xr, r ∈ Ns ∩ A), ∀ x ∈ Ω, s ∈ S (13)

The strong-MRF condition may be expressed in the form of the following identity. Denote

the marginal probabilityP (xA) = P (xs, s ∈ A), whereA ⊆ S. Given two sitess, t ∈ S for

which neither is a neighbor of the other,i.e., t 6∈ Ns ⇔ s 6∈ Nt, and givens, t 6∈ B ⊆ S, then

the strong-MRF condition of Eq. (13) can be expressed as,

P (xs|xt, xB) = P (xs|xB)

P (xB+s+t)

P (xB+t)
=

P (xB+s)

P (xB)
. (14)

The notationA + s is used to denote a set of sitesA plus the sites, or alternativelyA − s

denotes the same setA excluding the sites.

Proposition 1: Given a neighborhood systemN , the LCPDF of a strong-MRF may be de-

composed as,

log P (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| log P (xs|xC′−s) (15)
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or,

log P (xs, xr, r ∈ Ns) =
∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| log P (xC′) (16)

where
∑

s∈C′⊆C is performed over the setsC ′. Through Moussouris’s [6] conversion, Eqs. (15)

and (16) maybe re-expressed as,

P (xs|xr, r ∈ Ns) =
∏

C∈Cs

P (xs|xC−s)
nCsC , (17)

and,

P (xs, xr, r ∈ Ns) =
∏

C∈Cs

P (xC)nCsC , (18)

respectively where,

nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′|, (19)

Proposition 1 is proved via two separate mathematical constructions. The first proof is pre-

sented in Appendix I, and is based on the similar proof by Grimmett [14] and Moussouris [6]

for the equivalence of a standard MRF and a Gibbs distribution. The second proof is presented

in Appendix II, and is based on the ANOVA log-linear construction [11], [12] for testing inde-

pendence in a distribution. As both mathematical constructions are used to prove Proposition 1,

the constructions are equivalent in terms of the strong-MRF.

An example of a strong-MRF that is easy to conceptualize, is the checkerboard pattern. To show

that this pattern can be modeled as a strong-MRF, we need to show that Eq. (18) holds. Given

the nearest-neighbor neighborhood the empirical estimates of all the marginal and neighborhood

probabilities equal either 0 or 0.5. It is easy to see that given these values of the probabilities

that Eq. (18) holds. The field is still random, as two possiblestates of the field exist, however

there also exist forbidden states.

IV. ESTIMATION OF THE STRONGLCPDF

Bishopet al. [11] did not derive the direct estimate Eq. (18) or the general equation for the

ANOVA log-linear construction Eq. (33), but they did prove under what conditions Eq. (33) is

valid. As the ANOVA log-linear construction is equivalent to the strong-MRF model, we may

use the same conditions to determine when the direct estimate of Eq. (18) is valid. Given a set

of cliques with non-zero potentials over which Eq. (18) is calculated, the direct estimate is valid
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when these cliques do not form a loop, see Bishopet al. [11] page 76 for details. Therefore

Eq. (18) is only valid for the auto-model of the strong-MRF.

P (xs, xr, r ∈ Ns) =

∏

r∈Ns
P (xs, xr)

P (xs)|Ns|−1
(20)

If higher order marginal distributions are desired, then aniterative proportional fitting technique

may be used. Fienberg [12] and Bishopet al. [11] described the iterative proportional fitting

technique for a distribution defined in three dimensions. A generalized version of the technique

is presented by Paget [16]. A problem with the technique is that it is memory intensive and

computationally expensive.

Using the marginal distributions of a field to define the strong-MRF allows non-parametric

estimation to be applied. This usually implies Parzen density estimation [17]. However in using

Eq. (20) to sampleλs ∈ Λ, smoothingP (xs, xr) along thexs axis is probably not required or

desired. Therefore substitutingP (xs, xr) = P (xr|xs)P (xs) into Eq. (20) we obtain;

P (xs, xr, r ∈ Ns) = P (xs)
∏

r∈Ns

P (xr|xs) (21)

To make the Parzen density estimate ofP (xr|xs) quick to calculate, a box kernelK(x) with a

smoothing parameter ofh is used, whereby;

K(x) =







α + β, |x| ≤ h

β, else
where

α > 0

β > 0
(22)

This means that only sitesr ∈ S for which |xr − λr| ≤ h for someλr ∈ Λ are required, and

these sites can be pre-listed into an index. Definens =
∑

s∈S δ(xs − λs) andnr =
∑

s∈S δ(xs −

λs)γ(xr − λr), r ∈ Ns whereδ(x) = 1 for |x| = 0 else 0, andγ(x) = 1 for |x| ≤ h else 0.

Using the kernel of Eq. (22), the direct estimate of Eq. (21) becomes,

P (xs = λs, xr = λr, r ∈ Ns) =
ns

|S|

∏

r∈Ns

1

Zr

[

nr

ns

α + β

]

(23)

whereZr =
∑

λr∈Λ K(xr − λr) is a constant ifh = 0. As Eq. (23) implies only sampling from

λs ∈ Λ that are contained in the training field, neighborhood values xr, r ∈ Ns will also be

found in the training field. Therefore using a smoothing parameter ofh = 0 is not a problem.

This is the same argument as used by Ashikhmin [18].
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(a) (a.1) (b) (b.1)

(c) (c.1) (d) (d.1)

(e) (e.1) (f) (f.1)

(g) (g.1) (h) (h.1)

Fig. 1. VisTex textures: (a-h) Original128×128 pixel image; (a.1-h.1) synthesized256×256 pixel image by the non-parametric

strong-MRF model using the direct estimate with a3× 3 neighborhood.
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V. SYNTHESIS

To synthesize a texture we need to sample from the LCPDFP (xs|xr, r ∈ Ns) to update a

single site of the synthetic texture. This is repeated iteratively over the synthetic texture until the

field stabilizes. As we can use the direct estimate techniqueto obtain a non-parametric estimate

of the LCPDF, the synthesis algorithm by Paget and Longstaff[10] was used.

Fig. 1 presents 8 VisTex textures [19] which are synthesizedfrom the non-parametric strong-

MRF auto-model using the direct estimate with a3 × 3 neighborhood. The visual similarity

of the synthesized textures compared to the originals, demonstrates that these textures can be

modeled from just second order statistics.

The synthesis algorithm was performed on 166 VisTex textures [19]. On a Sun-Blade 100: 500

MHz, 256 MBytes RAM, the average synthesis time for a256×256 pixel image was 48 minutes

with a standard deviation of 51 minutes. The synthesis results of Fig. 1, and the synthesis times

are given for just 2 iterations over the whole image. More synthesis results plus source code is

provided in [20].

VI. CONCLUSION

Low order statistical models are better at presenting more stochastic versions of synthetic

texture, and are better at classification [21], [22], [23]. The strong-MRF model is not a general

model and in this particular implementation will only produce visually pleasing results for certain

textures. Generally, as the theory implicitly indicates, this model will only work for stationary

homogeneous textures with limited long range correlations. However from the synthetic textures

presented, it is clear that a surprising variety of texturescan be modeled from just second order

statistics. This gives credence to using second order models for classification.

For supervised classification, the strong-MRF model has notyet been shown to perform

better than the standard second order models like the fractal, Gabor, GLCM, or Gaussian MRF

models [21]. For texture synthesis, other non-parametric MRF models are more pliable to a

wider variety of textures [7], [10], [9].

The advantage of the strong-MRF model is that it can be used toacquire a non-parametric

model of any statistical order directly from any stationaryhomogeneous random field. The

non-parametric strong-MRF model is not constrained by the functionality of arbitrary predefined

potential functions. These advantages make it an excellentcandidate for the application of texture
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recognition in images that contain other textures of unknown origin [22]. However, it is hoped

that this model will light the way to finding the optimal modelthat will give realistic realizations

of a texture while at the same time being used for its classification.

APPENDIX I

PROOF 1 OF PROPOSITION1

This proof relies on the Möbius inversion theorem [15] Eq. (7), and is based on Grimmett’s [14]

and Moussouris’s [6] equivalence proof for a standard MRF and a Gibbs distribution. For any

setsA, B ⊆ S, define the potentialsVB of the strong-MRF such that;

log P (xA) =
∑

B⊆A

VB(xB), (24)

From the Möbius inversion theorem [15] Eq. (7), then,

VB(xB) =
∑

C⊆B

(−1)|B|−|C| log P (xC), ∀ x ∈ Ω. (25)

Moreover, for any elements ∈ B,

VB(xB) =
∑

s∈C⊆C

(−1)|B|−|C| log P (xC) +
∑

s 6∈C⊆B

(−1)|B|−|C| log P (xC)

=
∑

s∈C⊆B

(−1)|B|−|C|(log P (xC) − log P (xC−s))

=
∑

s∈C⊆B

(−1)|B|−|C| log P (xs|xC−s). (26)

Given thatx is defined on a strong-MRF with respect toN , thenV is a strongN -potential iff

VB(xB) = 0 ∀ B 6∈ C. ChooseB 6∈ C, then∃s, t ∈ B such thatt 6∈ Ns ⇔ s 6∈ Nt.

VB(xB) =
∑

C⊆B

(−1)|B|−|C| log P (xC)

=
∑

C⊆B−s−t

(−1)|B|−|C| log P (xC) +
∑

C⊆B−s−t

(−1)|B|−|C+s| log P (xC+s) +

∑

C⊆B−s−t

(−1)|B|−|C+t| log P (xC+t) +
∑

C⊆B−s−t

(−1)|B|−|C+s+t| log P (xC+s+t)

=
∑

C⊆B−s−t

(−1)|B|−|C| log

[

P (xC)P (xC+s+t)

P (xC+s)P (xC+t)

]

= 0. (27)

In obtaining Eq. (27) the strong-MRF identity of Eq. (14) is used. Therefore a strong-MRF may

be expressed with respect to theN -potentials of Eq. (25) or Eq. (26). However given the fact
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that hereC could be the null set, Eq. (27) suggests that the autocorrelation function could be

used to determine the neighborhood size.

As Eq. (25) and Eq. (26) have been shown to beN -potentials, we can now use them to prove

Proposition 1. Consider a sites ∈ S, then the strong-LCPDF may be expressed as;

P (xs|xr, r ∈ Ns) =
P (xS)

P (xS−s)
= exp

[

∑

C∈C

VC(xC) −
∑

s 6∈C∈C

VC(xC)

]

= exp

[

∑

s∈C∈C

VC(xC)

]

= exp

[

∑

C∈Cs

VC(xC)

]

log P (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| log P (xs|xC′−s) (28)

Where in the above equation, theN -potential Eq. (26) is used since all the cliquesC ∈ Cs

contain the sites. This proves the first part of Proposition 1, Eq. (15). The second part of

Proposition 1, Eq. (16) is proved by applying Möbius inversion theorem [15] Eq. (8) to Eq. (25)

for the set of sitesNs + s ⊂ S;

log P (xs, xr, r ∈ Ns) =
∑

C⊆Ns+s

∑

C′⊆C

(−1)|C|−|C′| log P (xC′)

=
∑

C⊆Ns

{

∑

C′⊆C+s

(−1)|C+s|−|C′| log P (xC′) +
∑

C′⊆C

(−1)|C|−|C′| log P (xC′)

}

=
∑

C⊆Ns

{

∑

C′⊆C

(−1)|C+s|−|C′+s| log P (xC′+s) +
∑

C′⊆C

(−1)|C+s|−|C′| log P (xC′)+

∑

C′⊆C

(−1)|C|−|C′| log P (xC′)

}

=
∑

C⊆Ns

∑

C′⊆C

(−1)|C+s|−|C′+s| log P (xC′+s)

=
∑

C⊆Cs

∑

s∈C′⊆C

(−1)|C|−|C′| log P (xC′) (29)

Finally, to obtain Eq. (17) and Eq. (18) of Proposition 1 we may observe that both Eq. (28)

and Eq. (29) have the correct Möbius set decomposition withrespect to the setNs. Even though

the sites is included in the decomposition, it is included in all cliques and therefore does not

compromise the Möbius decomposition over the setNs. Therefore the Moussouris [6] conversion

can be applied to both Eq. (28) and Eq. (29) over the set of sites Ns to obtain Eqs. (17) and

(18) respectively.
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APPENDIX II

PROOF 2 OF PROPOSITION1

This proof is based on the ANOVA log-linear construction [11], [12] for testing independence

in a distribution. In ANOVA-type notation, the probabilityP (xA) is decomposed into its marginal

distributions in terms of thegeneral log-linear construction[11]:

log P (xA) =
∑

B⊆A

UB(xB). (30)

From the Möbius inversion theorem [15] Eq. (7), we have:

UB(xB) =
∑

C⊆B

(−1)|B|−|C| log P (xC) (31)

giving,

log P (xA) =
∑

B⊆A

∑

C⊆B

(−1)|B|−|C| log P (xC) (32)

This is the general formula for the ANOVA log-linear construction. The summation is performed

over all setsB ⊆ A for which the potential functionUB(xB) 6= 0. Moussouris’s [6] conversion

gives,

P (xA) =
∏

C⊆A

P (xC)nAC , nAC = (−1)|C|
∑

C⊆B⊆A

(−1)|B| (33)

Although this formula was proposed by Moussouris for the strong-MRF, the formula can also

be applied to the study of ANOVA for contingency tables. It isnot known whether this has been

made apparent to the contingency tables community.

In the ANOVA log-linear construction,U∅ is the grand mean of the logarithmic probabilities

log P (yA), yA ∈ ΩA:

U∅(x∅) =
1

|ΩA|

∑

yA∈ΩA

log P (yA). (34)

The rest of the potential functionsUB(xB), B ⊆ A, represent successive deviations from the

grand meanU∅ such that,

∑

C⊆B

UC(xC) =
1

|ΩA−B|

∑

yA−B∈ΩA−B

log P (xByA−B). (35)

The equivalence between the ANOVA log-linear constructionand the strong-MRF model is

proved by proving thatU is a strongN -potential. Given thatx is defined on a strong-MRF with
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respect toN , thenU is a strongN -potential if UB(xB) = 0 ∀ B 6∈ C. ChooseB 6∈ C, then

∃s, t ∈ B such thatt 6∈ Ns ⇔ s 6∈ Nt. From Eq. (35),

∑

C⊆B

UC(xC) =
1

|ΩA−B|

∑

yA−B∈ΩA−B

log P (xByA−B)

UB(xB) =
1

|ΩA−B|

∑

yA−B∈ΩA−B

log P (xByA−B) −
∑

C⊂B

UC(xC)

=
1

|ΩA−B|

∑

yA−B∈ΩA−B

log P (xByA−B) −
∑

C⊆B−s

UC(xC) −

∑

C⊆B−t

UC(xC) +
∑

C⊆B−s−t

UC(xC) −
∑

C⊂B−s−t

UC+s+t(xC+s+t)

∑

C⊆B−s−t

UC+s+t(xC+s+t) =
1

|ΩA−B|

∑

yA−B∈ΩA−B

log P (xByA−B) −
∑

C⊆B−s

UC(xC) −

∑

C⊆B−t

UC(xC) +
∑

C⊆B−s−t

UC(xC)

=
1

|ΩA−B|

∑

yA−B∈ΩA−B

log P (xByA−B) −

1

|ΩA−B+s|

∑

yA−B+s∈ΩA−B+s

log P (xB−syA−B+s) −

1

|ΩA−B+t|

∑

yA−B+t∈ΩA−B+t

log P (xB−tyA−B+t) +

1

|ΩA−B+s+t|

∑

yA−B+s+t∈ΩA−B+s+t

log P (xB−s−tyA−B+s+t)

=
1

|ΩA−B|

1

|Ωs+t|

∑

yA−B+s+t∈ΩA−B+s+t

log P (xByA−B) −

1

|ΩA−B+s|

1

|Ωt|

∑

yA−B+s+t∈ΩA−B+s+t

log P (xB−syA−B+s) −

1

|ΩA−B+t|

1

|Ωs|

∑

yA−B+s+t∈ΩA−B+s+t

log P (xB−tyA−B+t) +

1

|ΩA−B+s+t|

∑

yA−B+s+t∈ΩA−B+s+t

log P (xB−s−tyA−B+s+t)

=
1

|ΩA−B+s+t|

∑

yA−B+s+t∈ΩA−B+s+t

log

[

P (xByA−B)P (xB−s−tyA−B+s+t)

P (xB−syA−B+s)P (xB−tyA−B+t)

]

=
1

|ΩA−B+s+t|

∑

yA−B+s+t∈ΩA−B+s+t

log

[

P (xs|xB−syA−B)P (ys|xB−s−tyA−B+t)

P (ys|xB−syA−B)P (xs|xB−s−tyA−B+t)

]

= 0 (36)
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To obtain Eq. (36), the strong-MRF identity Eq. (14) was used. For B = ∅ we have from

Eq. (36),Us+t(xs+t) = 0. AssumeUB(xB) = 0 for all |B| < n, then from Eq. (36) for|B| = n

we haveUB(xB) = 0. By the principle of mathematical induction,UB(xB) = 0 ∀ B 6∈ C.

Updating Eq. (32) for a strong-MRF, the ANOVA log-linear construction may now be rewritten

as,

log P (xs, xr, r ∈ Ns) =
∑

C⊆Ns+s,
C∈C

∑

C′⊂C

(−1)|C|−|C′| log P (xC′) (37)

As in the derivation for Eq. (29), Eq. (37) can be re-expressed as,

log P (xs, xr, r ∈ Ns) =
∑

C⊆Cs

∑

s∈C′⊆C

(−1)|C|−|C′| log P (xC′) (38)

Therefore via the ANOVA log-linear construction, Eq. (16) of Proposition 1 is proved. The rest

of Proposition 1 is subsequently proved via the same derivations as used in the first proof of

Proposition 1.
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