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Abstract

In this paper we present noncausal, nonparametric, multiscale, Markov Random Field (MRF) models
for synthesising and recognising texture. The models have the ability to capture the characteristics of
a wide variety of textures, varying from the structured to the stochastic. For texture synthesis, we use
our own novel multiscale approach, incorporating local annealing, allowing us to use large neighbourhood
systems to model some complex textures. The new multiscale texture synthesis algorithm also produces
synthetic textures with few phase discontinuities. The power of our modelling technique is evident in
that only a small training image is required to synthesis representative examples of the training texture.
We also show how the high dimensional model of the texture may be modelled with lower dimensional
statistics without over compromising the integrity of the representation. We then show how these models
can be used for the unsupervised texture segmentation and recognition of images containing previously
unseen textures; a technique useful in the practical application of recognising different terrain types from
Synthetic Aperture Radar (SAR) images.
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I. Introduction

IN the image processing literature, texture is usually defined in terms of the spatial in-
teractions between pixel values. The aim of texture analysis is to capture the visual

characteristics of texture in an analytical form by mathematically modelling these spatial
interactions [26]. If these spatial characteristics are uniquely modelled, then different exam-
ples of textures from one source (population) can be associated analytically, and textures
from other sources can be discriminated against. This allows segmentation of an image into
its various textural components with each component being classified according to how well
it fits the mathematical model of a particular texture. Although this approach is theoreti-
cally plausible, in practice current techniques require the number and type of textures to be
a prior known. That is, they use a set of training textures to formalise the criteria by which
the texture models become unique from each other, but not necessarily unique from other
textures not included in the training set [12], [10], [7], [29]. These conventional models need
only capture enough textural characteristics to classify the set of textures via discriminant
analysis [17]. This approach is adequate if the image undergoing texture segmentation and
classification is known to contain only textures which were modelled.

If a texture is to be recognised in a scene containing previously unseen textures, then
a new approach is required. The texture models needs to capture more than just the
characteristics required to distinguish it from other known textures – it needs to capture
all the unique characteristics of that texture. When segmenting and classifying an image,
the texture model could then be used to determine the probability a segmented area of
an image had the same unique characteristics as the modelled texture without having to
measure the probability against other possible textures. This would solve the problem of
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previously unseen textures being present in the image. Images susceptible to this type of
texture recognition problem are the Synthetic Aperture Radar (SAR) images of Earth’s
terrain obtained via satellites or airborne reconnaissance. These types of images contain a
myriad of textures. It would be unreasonable to expect a conventional texture classification
scheme to have previously identified and modelled all the different types of textures possibly
present in such images.

Unfortunately, with the present knowledge of texture, obtaining a model that captures all
the unique characteristics specific to a particular texture is an open problem [20]. Texture
is not fully understood, and therefore, what constitutes the unique characteristics has not
been defined. However, a reasonable way to test whether a model has captured all the
unique characteristics is to use the same model to synthesise texture and subjectively
judge the similarity of the synthetic texture to the original.

Conventional texture models, like the auto-models [2], autoregressive (AR) models [11],
moving average (MA) models [26], or combination of both (ARMA) models [31], have not
been found to provide a basis for realistically synthesising natural textures [26]. However
recent advances in texture synthesis have produced models that are capable of synthesising
natural textures [8], textures that contain both structural and statistical elements. These
models are based on the stochastic modelling of various multi-resolution filter responses [5],
[45], [28], [37], but they do not use third or higher order statistics, and it is undetermined
whether the chosen filters are globally optimal for all textures. Julesz [30] suggested there
was textural information in the higher order statistics, and Gagalowicz et al. [19] used third
order statistics to generate some natural textures. Popat and Picard [39] successfully used
a high-order, causal, nonparametric, multiscale MRF model to synthesis some structured
natural textures.

In this paper, we present a noncausal, nonparametric, multiscale, Markov Random Field
(MRF) model capable of synthesising both stochastic and structured textures. We use
a multiscale synthesis algorithm [24] in which we incorporate a novel pixel temperature
function for local annealing.

Although the synthesis test may indicate if a model has captured the specific characteris-
tics of a texture, it does not determine whether the model is suitable for segmentation and
classification. Using the same philosophy as in [45], a texture model should maximise its
entropy while retaining the unique characteristics of the texture. In terms of the nonpara-
metric MRF this is equivalent to reducing the statistical order of the model while retaining
the integrity of the synthesised textures.

In this paper, we also present a method for reducing the statistical order of the non-
parametric MRF model to a set of lower order statistical properties based on the cliques
of the MRF. We show that this reduced model still contains the unique characteristics
required for synthesising representative texture, but due to the lower order statistics is able
to perform better segmentation and classification. By adjusting the extent of statistical
reduction, the model can be optimised to capture the most unique characteristics while
retaining the integrity of the synthesised textures, thereby producing a model suitable for
unsupervised recognition (and hence labelling) of matching segments in an image.

Unsupervised recognition should not be confused with the term unsupervised classifica-
tion, used [32], [40] to describe the selection of like-textures in an image without any prior
knowledge of the number or types of textures present. Unsupervised classification can not
be used to give anything but arbitrary labels to segments in a scene.

We have structured the paper so as to first outline the fundamentals of Markov Random
Fields in section II. Then we move onto the nonparametric model, section III, which is
immediately followed by our improved nonparametric model that is based on the cliques of
the MRF, section IV. We then look at how we were able to use a multiscale representation
to synthesise visually similar texture from a source texture, section V, and how the models
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were used in the unsupervised segmentation and recognition of textured images, section VI.
Results are presented in section VII. Finally we discuss how these methods may be used
in a practical application, section VIII, and conclude with a summary and conclusion,
section IX.

II. General Markov Random Field Model

To model a digital image as a MRF, consider each pixel in the image as a site s on a
lattice S = {s1, s2, . . . , sN}, and the grey scale value associated with the pixel as equal to
the value xs. The site value xs is then contained in the state space Λ

.
= {0, 1, 2, . . . , L− 1},

where L is the number of grey levels. The configuration space for the set of variables
x = {xs, s ∈ S} is given by Ω and is the set of all possible images, where Ω = ΛN .

Let Π be the (joint) probability measure on Ω with Π(x) > 0, ∀ x ∈ Ω. Besag [2, p 195]
proved that the joint distribution Π(x) is uniquely determined by its Local Conditional
Probability Density Functions (LCPDF), Πs(xs|xr, r 6= s).

The property of a MRF is that the LCPDF is only dependent on a subset of sites
{r ∈ Ns ⊂ S}, where Ns is the set of sites neighbouring s. The set Ns is referred to as the
neighbourhood of s, and N = {Ns ⊂ S, s ∈ S} as the neighbourhood system which is the
set of neighbourhoods on S. That is,

Πs(xs|xr, r 6= s) = P (xs|xr, r ∈ Ns) s ∈ S, x ∈ Ω. (1)

An image is modelled by estimating the LCPDF with respect to a neighbourhood system
N .

The Hammersley-Clifford theorem [27], also referred to as the MRF-Gibbs equivalence
theorem, and proved in [2], [20], [25], [36], gives form to the LCPDF P (xs|xr, r ∈ Ns) [22],
[20] such that the respective Π defines a valid joint distribution.

Given a neighbourhood system N , a clique is a set C ⊆ S such that s, r ∈ C, s 6= r
implies s ∈ Nr. That is, all pairs of distinct sites in a clique are neighbours. The single
site subset is also a clique. The set of cliques defined on S with respect to N is denoted
by C. The local clique set for the site s ∈ S is denoted by Cs = {C ∈ C, s ∈ C}. A scheme
for extracting the local clique set is given in [38]. A valid LCPDF is defined with respect
the to cliques C ∈ Cs and the potential functions VC(x) defined on each clique [22], [20]:

P (xs|xr, r ∈ Ns) =
1

Zs

exp

{

∑

C∈Cs

VC(x)

}

, (2)

where the local normalising constant Zs =
∑

xs∈Λ P (xs|xr, r ∈ Ns).
The essential ingredients of the potential functions VC(x) defined on each clique are:

VC(x) = 0 if C 6∈ C; VC(x) ∈ <; and VC(x) = VC(x′) if xs = x′
s, ∀ s ∈ C. V is normalised

if VC(x) = 0 whenever xs = 0 for any s ∈ C, where we assume 0 ∈ Λ, although any
other consistent value for xs would do equally well. Normalised potentials ensure unique
representation, but have no practical importance. For later reference, potential functions
which fulfill all of the above criteria will be labelled N -potentials.

The MRF-Gibbs equivalence theorem implicitly requires the neighbourhood system to
adhere to the criterion s ∈ Nr ⇔ r ∈ Ns. This in turn implies that the neighbourhoods
must be symmetrical for homogeneous MRFs. The symmetrical neighbourhood systems
used in this paper are the same as in [20], [22] for which the neighbourhood system N o =
{N o

s , s ∈ S} is defined as

N o
s =

{

r ∈ S : 0 < |s− r|2 ≤ o
}

, (3)

where |s − r| is the Euclidean distance between two points s, r ∈ S, and o is the order of
the neighbourhood system, (see Fig. 1).
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Fig. 1. Neighbourhoods and cliques: (a) The first order neighbourhood o = 1 or nearest-neighbour

neighbourhood for the site s = ‘•′ and r = ‘◦′ ∈ Ns; (b) second order neighbourhood o = 2; (c) eighth
order neighbourhood o = 8. (d) local clique set for nearest-neighbour neighbourhood; (e) clique types for
nearest-neighbour neighbourhood; (f) additional clique types for second-order neighbourhood.

A. A Representation for N -Potential V

The following construction for the N -Potential is due to Grimmett [25], which first
requires the Möbius inversion theorem [41].

Theorem 1: Möbius inversion theorem for arbitrary real functions F and G defined on
the subsets B and C of some finite set A:

F (A) =
∑

B⊆A

G(B) iff G(B) =
∑

C⊆B

(−1)|B|−|C|F (C) (4)

or, equivalently,

F (A) =
∑

B⊆A

∑

C⊆B

(−1)|B|−|C|F (C), (5)

where |A| = number of sites in set A. Moussouris [36] developed an elegant proof for this
construction.

Given an image x ∈ Ω and a set A ⊂ S, denote

xA = {xA
s , s ∈ S}, xA

s =

{

xs, s ∈ A
0, s 6∈ A.

(6)

For ease of notation, denote x(s) = {xr, r 6= s}.
Then, any Π > 0 is a Gibbs distribution with respect to N -potentials:

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Π(xC′

), C, C ′ ∈ C. (7)

Moreover from [20], for any element s ∈ C,

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Πs(x
C′

s |x
C′

(s)), C, C ′ ∈ C. (8)
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The re-expression for the joint distribution Π(x), as given by Geman [20] from equation
(7), can be similarly obtained for the LCPDF by the Möbius inversion of equation (8),
giving

log P (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

C′⊆C,
s∈C′

(−1)|C|−|C′| log Πs(x
C′

s |x
C′

(s)). (9)

Moussouris [36] gave a further re-expression of the clique decomposition formulae of Π(x).
The equivalent re-expression of the LCPDF clique decomposition from equation (9) is

P (xs|xr, r ∈ Ns) =
∏

C⊆Cs

Πs(x
C
s |x

C
(s))

nCsC , (10)

where Cs = {C ∈ C, s ∈ C} is the local clique set and

nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′|. (11)

III. Nonparametric MRF Model

The nonparametric MRF model is based on estimating the LCPDF from a multi-dimensional
histogram of the neighbourhood over a homogeneous textured image. Each dimension of
the histogram represents a site from the neighbourhood of the LCPDF with one dimension
for the site itself. The total number of dimensions is the statistical order of the model and
is equal to the neighbourhood size plus one. Although it would be informative to test larger
and larger neighbourhoods for modelling texture, there is a limit to the size of which may be
successfully modelled. Silverman [43, p 94] showed that to maintain accuracy in a model,
the amount of sample data needs to grow almost exponentially with the dimensionality of
the histogram. As we are dealing with a limited amount of sample data – approximately
equal to the number of pixels in a source texture image – the accuracy of the model will
rapidly decrease as the dimensionality of the histogram increases. In such cases, when the
sample data is sparsely dispersed over the multi-dimensional histogram domain, nonpara-
metric estimates of the LCPDF tend to be more reliable than their parametric counterparts
if the underlying true distribution is unknown [43]. This is because nonparametric estima-
tion only tries to model those areas of the multi-dimensional histogram that contain the
data rather than trying to fit a model over the whole of the histogram domain as with
parametric estimation [13], [42].

Density estimation is an attempt to discern a representative probability density function
from the sampled data. However in using nonparametric estimation the LCPDF may no
longer define a valid joint distribution Π, but the underlying true shape of the distribution
will not be compromised by trying to fit the shape of an assumed parametric distribution
to the data.

The most common nonparametric density estimator is the Parzen-window estimator [43],
[17]. We chose a standard multi-dimensional Gaussian density function as the kernel func-
tion for the Parzen-window estimator. Given a source image y ∈ Ω of a homogeneous
texture and a predefined neighbourhood system N defined on a lattice Sy, the sample data
Zp = [yp, yq, q ∈ Np]

T is taken from all sites p ∈ Sy for which Np ⊂ Sy. Denote the variable
n as the number of sample data Zp, i.e., the number of sites {p ∈ Sy,Np ⊂ Sy}. Equate
d = |Np| + 1 the number of elements in the vector Zp, i.e., d equals the dimensionality of
the LCPDF. Finally the Parzen-window estimator requires a window parameter h. Thus
the estimated LCPDF, defined with respect to the Parzen-window density estimator [43],
[17], is

P̂ (xs|xr, r ∈ Ns) =

∑

p∈Sy,Np⊂Sy
exp

[

− 1
2h2 (z− Zp)

T(z− Zp)
]

∑

xs∈Λ

∑

p∈Sy,Np⊂Sy
exp

[

− 1
2h2 (z− Zp)T(z− Zp)

] , (12)
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where z = [xs, xr, r ∈ Ns]
T.

The window parameter h determines the amount of smoothing applied to the histogram.
The aim is to choose h so as to obtain the best estimate of the LCPDF. If h is too small,
the LCPDF will not be general enough to model all textures subjectively judged similar
to the modelled texture. If h is too large, then the LCPDF will be too general, and some
detail associated with the texture may be lost. We chose the window parameter h to be
the optimal window parameter as specified by Silverman [43, p 85].

h = σ

{

4

n(2d + 1)

}1/(d+4)

, (13)

where σ2 is the average marginal variance. In our case, the marginal variance is the same in
each dimension of the multi-dimensional histogram and, therefore, σ2 equals the variance
associated with the one-dimensional histogram of the source image y.

It was Moussouris [36] who suggested that the Markovian system could be simplified by
imposing stronger conditions on the LCPDF. In the next section we redefine the MRF with
a stronger assumption so as to use the cliques of the MRF in estimating the LCPDF. This
will produce a consistent LCPDF with a valid joint distribution Π, and lower the statistical
order of the model.

IV. Strong Nonparametric MRF Model

Here we present our new version of the nonparametric model. It is still estimated over the
same neighbourhood, but the Parzen-window estimation is performed over a set of smaller
domains. We estimate the LCPDF as a function of its marginal distributions by assuming
that there is conditional independence between non-neighbouring sites for any subset of
S. This is a much stronger assumption than made for a normal MRF which defines a
site as being conditionally independent upon its non-neighbouring sites given all of the
neighbouring sites. We show that this strong MRF model is equivalent to the Analysis-of-
variance (ANOVA) construction [18]. This equivalence allows us to use the theorems from
the ANOVA construction to estimate the LCPDF of the strong MRF model.

MRF condition

Πs(xs|xr, r 6= s) = P (xs|xr, r ∈ Ns), ∀ s ∈ S, x ∈ Ω. (14)

Strong MRF condition

Πs(xs|xr, r 6= s, r ∈ A ⊆ S) = P (xs|xr, r ∈ A ∩ Ns), ∀ s ∈ S, x ∈ Ω, A ⊆ S. (15)

The strong MRF condition states that the LCPDF Πs(xs|xr, r ∈ A ⊆ S), for any subset
A ⊆ S, is only dependent on those sites {xr, r ∈ A ∩ Ns}, regardless of whether Ns ⊆ A.
This is contrary to a standard MRF for which, when given only some of the pixels {xr, r ∈
Ns}, the conditional probability Πs(xs|x(s)) will, in general, be no longer conditionally
independent of those sites r 6∈ Ns.

If an image can be modelled as a MRF, it does not necessarily follow that it can also be
modelled as a strong MRF. However, a common approach to simplifying complex mathe-
matical problems is to assume a degree of independence where none may exist. We therefore
assume an extra degree of conditional independence to simplify the MRF model as a strong
MRF model.

We denote PA(x) = P (xs, s ∈ A), where A ⊆ S. The probability PA(x) is then the joint
probability for the domain A ⊆ S:

PA(x) =
∑

y∈Ω,
yA=xA

Π(y), A ⊆ S. (16)
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where xA is defined as in equation (6). The null probability P∅(x) is therefore defined by
equation (16) as P∅(x) = 1.

The strong MRF condition may be expressed in the form of the following identity. Given
two sites s, t ∈ S for which neither is a neighbour of the other, i.e., t 6∈ Ns ⇔ s 6∈ Nt, then
from the strong MRF condition defined by equation (15),

P (xs|xt, xr, r ∈ B) = P (xs|xr, r ∈ B), (17)

giving
PB+s+t(x)

PB+t(x)
=

PB+s(x)

PB(x)
, (18)

where B ⊆ S, s 6∈ B, t 6∈ B. The notation B + s represents a set of sites B plus the site s,
whereas B − s is the same set B excluding the site s.

For any A ⊆ S, s ∈ A, denote

PA(xs|x(s)) = PA(x)/PA−s(x) = P (xs|xr, r ∈ A− s), (19)

Proposition 1: Given a neighbourhood system N , the LCPDF of a strong MRF is

log P (xs, xr, r ∈ Ns) =
∑

C∈Cs

∑

C′⊆C,
s∈C′

(−1)|C|−|C′| log PC′(x), (20)

or equivalently,

log P (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

C′⊆C,
s∈C′

(−1)|C|−|C′| log PC′(xs|x(s)) (21)

which via the Moussouris [36] decomposition may be expressed in the form,

P (xs, xr, r ∈ Ns) =
∏

C∈Cs

PC(x)nCsC , (22)

and
P (xs|xr, r ∈ Ns) =

∏

C∈Cs

PC(xs|x(s))
nCsC , (23)

respectively, where

nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′|, (24)

and C, C ′ are cliques from the local clique set Cs = {C ∈ C, s ∈ C}.
We provide two proofs for Proposition 1. The first method relies on the Möbius inversion

formula (4), and follows Grimmett’s [25] and Moussouris’s [36] construction for the N -
potential V , Appendix A. The second proof is based on the ANOVA construction [18] for
testing variable independence in a distribution, Appendix B. The proofs show that the
strong MRF model is equivalent to the ANOVA construction.

Even though equation (22) represents the general clique decomposition for P (xs, xr, r ∈
Ns), it is subject to condition (43). Bishop et al. [4] did not derive the general formula
(22) for the ANOVA construction, but do define under what conditions it may exist. Given
a set of cliques over which the formula (22) is derived, Bishop et al. [4, p 76] outlined rules
for determining when formula (22) is valid.
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A. Estimation of the strong LCPDF

The strong LCPDF, P (xs|xr, r ∈ Ns), is estimated by first calculating the set of marginal
probabilities {PC(xs|x(s)), C ∈ Cs} and then combining them to obtain P (xs|xr, r ∈ Ns)
via equation (23). Each marginal probability PC(xs|x(s)), C ∈ Cs is estimated in the same
way as the nonparametric LCPDF (12). However, in the case of the marginal estimates,
equation (12) is calculated with respect to C rather than Ns. The set of sample vectors,
{Zp, p ∈ Sy,Np ⊂ Sy}, is therefore modified to {Zp, p ∈ Sy, C ⊂ Sy}. The dimensionality of
z is modified to d = |C|, and the optimal window parameter, equation (13), is recalculated
for each C ∈ Cs.

Equations (22) and (23) give the direct estimate for determining P (xs, xr, r ∈ Ns) and
P (xs|xr, r ∈ Ns) from its marginal probabilities, respectively. However for the neighbour-
hood systems defined by equation (3), the existence rules [4, p 76] preclude equations (22)
and (23) for other than the nearest-neighbour neighbourhood system N 1 with pairwise
clique decomposition. Alternatively, the iterative proportional fitting technique [4, p 83]
and [18, p 37] is able to be used for the evaluation of the strong MRF model for all neigh-
bourhood systems with any clique decomposition. However, regardless of the number of
grey levels and which marginals are used, the minimum memory space required to iter-
atively calculate the LCPDF is 2|Ns|+1 floating point values. Our experiments were run
on a massive parallel processor machine, the MasPar1. Although we obtained the neces-
sary increase in processing speed, it was at the expense of available memory. Because of
this we found that we could not estimate the LCPDF for neighbourhoods larger than ten
sites. This meant that the iterative proportional fitting technique could only be used for
neighbourhood systems N 1 and N 2.

Our variation on the direct estimate (22) is the simple estimate,

P (xs, xr, r ∈ Ns) =
∏

C∈Cs,
C 6⊂C′∈Cs

PC(x). (25)

The simple estimate can be calculated on the MasPar computer for large neighbourhood
systems with various clique decompositions. The simple estimate is similar to the direct
estimate, except it only incorporates those marginal probabilities PC(x) defined on the
major cliques contained in the local clique set, {C ∈ Cs, C 6⊂ C ′ ∈ Cs}, [38]. The clique
decomposition summation (25) is performed over those cliques contained in the local clique
set which are not subsets of other cliques contained in the local clique set. Intuitively,
the LCPDF will be more “peaked” around the modes. For texture synthesis purposes, a
“peaked” LCPDF means that the Gibbs sampler [22] will behave more like the Iterative
conditional modes (ICM) algorithm [3].

V. Multiscale Texture Synthesis

Texture synthesis is a means of testing whether the LCPDF has captured the textural
characteristics required to model a particular texture. How specific the required texture
characteristics need to be is governed by the intended application of the texture model. The
aim of our work was to develop a texture model suitable for unsupervised texture recogni-
tion, therefore, able to capture all textural characteristics unique to a source texture. We
propose that if the model is capable of synthesising texture that is visually indistinguishable
from the source texture, then it has captured all the visual characteristics of that texture.

There have been quite a few attempts at synthesising textures, but none of the con-
ventional techniques have produced a general model for natural textures [26]. However

1DEC mpp 12000 with 16,384 processors each with 64 kb of memory, which can yield speeds of up to 60 Giga
instructions per second
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new methods based on stochastic modelling of various multi-resolution filter responses
have produced impressive results [5], [45], [28], [37]. Alternatively Popat and Picard [39]
successfully used a high order causal nonparametric multiscale MRF model to synthesis
structured natural textures. In fact our approach is indicative of theirs, but where they
suffered from phase discontinuity we used our method of local annealing to synthesis highly
representative examples of natural textures.

We perform texture synthesis via a multiscale synthesis algorithm incorporating our
novel pixel temperature function. As part of the synthesis process, the pixel temperature
function actually reduces the dimensionality of the multi-dimensional histogram which, in
turn, alleviates the problem associated with estimating the model in a high-dimensional
space. This means we are able to use large neighbourhood systems to model texture.

We can synthesise a texture from a MRF model by a method known as stochastic relax-
ation (SR) [14], [21], [22]. We start with an image and iteratively update pixels in the image
with respect to the LCPDF. This generates a sequence of images {x(0), x(1), . . . , x(n)} with
the property,

lim
n→∞

P (x(n)|x(0)) = Π(x) ∀ x ∈ Ω. (26)

Two well-known SR algorithms are the Metropolis algorithm [35] and the Gibbs sam-
pler [22]. Besag [3] introduced deterministic relaxation algorithm called the Iterative condi-
tional modes (ICM) algorithm. Synthesis by the Gibbs sampler tends to converge a texture
defined by the equilibrium condition (26), whereas for the ICM algorithm, the synthe-
sis tends to a texture more conditional on the starting image x(0). Both algorithms are
adequate for synthesising texture.

A. Multiscale Relaxation

A problem with the single scale relaxation process is that global image characteristics
evolve indirectly in the relaxation process [24], [44]. Global image characteristics are typ-
ically only propagated across the image lattice by local interactions and therefore evolve
slowly, requiring long relaxation times to obtain equilibrium, as defined by equation (26).
With multiscale relaxation (MR), we attempt to overcome this problem by implementing
stochastic relaxation (SR) at various resolutions; first at a low resolution and then at pro-
gressively higher resolutions [24], [5], [34], [7], [1]. The information obtained from SR at
one resolution is used to constrain the SR at the next highest resolution. By this method,
global image characteristics that have been resolved at a low resolution are infused into
the relaxation process at the higher resolutions. This helps reduce the number of iterations
required to obtain equilibrium [44]. Multiscale relaxation also helps the ICM algorithm
converge to an image that is closer to the global maximum of the joint distribution Π [6],
[16].

The multiscale model may be described by a multigrid representation of the image, as
shown in Fig. 2. The grid at level l = 0 represents the image at the original resolution,
where each intersection point ‘•’ is a site s ∈ S. The lower resolutions, or higher grid levels
l > 0, are decimated versions of the image at level l = 0. This multigrid representation is
also used by Popat and Picard [39].

Given an N ×M image x, we define the rectangular lattice on which to represent this
image at grid level l = 0 as

S = {s = (i, j) : 0 ≤ i < N, 0 ≤ j < M} . (27)

The multigrid representation of the image x is then the set of images xl, for grid levels
l ≥ 0. The image xl is defined on the lattice S l ⊂ S, where

Sl =

{

s = (2li, 2lj) : 0 ≤ i <
N

2l
, 0 ≤ j <

M

2l

}

. (28)
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l = 1

l = 2

?

increasing
image
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Fig. 2. Grid organisation for MR via decimation.

The set of sites S l at level l represents a decimation of the previous set of sites S l−1 at
the lower grid level l − 1. On this multiscale lattice representation, we need to redefine
the neighbourhood system for each grid level l ≥ 0. Therefore, we define neighbourhood
N l

s, s ∈ Sl with respect to order o as

N l
s=(2li,2lj) =

{

r = (2lp, 2lq) ∈ Sl : 0 < (i− p)2 + (j − q)2 ≤ o
}

. (29)

We use the MR algorithm proposed by Gidas [24], which maintains the constraint im-
posed by the image xl+1 through the entire SR process at level l and successive levels k < l.
The constraint is such that, at any point through the SR process at level l, the image xl+1

may still be obtained from xl by the multigrid representation. As we have used decimation
to obtain xl+1 from xl, the MR constraint is maintained at level l by not performing SR
on those sites s ∈ S l+1 ⊂ Sl, as defined by equation (28).

To better incorporate the MR constraint into the SR process, we introduce a novel pixel
temperature function, which directly defines how the MR constraint is imposed on the SR
process. The pixel temperature function also produces an equilibrium state which may be
used to determine when the SR process can be terminated at one level and started at the
next level. The multiscale relaxation algorithm incorporating our novel pixel temperature
function is also capable of synthesising texture with minimal phase discontinuities.

B. Pixel Temperature Function

The aim of our pixel temperature function is to define a degree of “confidence” in a
pixel having the correct value. Each pixel has its own temperature ts, representing the
confidence associated with the pixel xs. The confidence is expressed as a value 0 ≤ ts ≤ 1,
where 0 represents complete confidence, and 1 none at all. We have defined the pixel
temperature function so as to relate to the global temperature function T used in stochastic
annealing [22]. In fact, the function of our local pixel temperature may be regarded as an
implementation of local annealing in the relaxation process.

In the MR algorithm, the confidence or temperature associated with each pixel is used to
modify the dimensionality of the LCPDF. This is done so that the conditional dependence
of the LCPDF is strongest on those pixels with ts → 0, and weakest for those with ts → 1.
The pixel temperature is incorporated into the LCPDF by modifying the form of (z− Zp)
in equation (12). Given that the estimate of the LCPDF is for an image x at the site s ∈ S,
the vector z = [xs, xr, r ∈ Ns]

T. The sample data Zp is from a source image y defined on
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the lattice Sy, where Zp = [yp, yq, q ∈ Np]
T p ∈ Sy, and

(z− Zp)⇒ [xs − yp, (xr − yr−s+p)(1− tr), r ∈ Ns]
T, (30)

where the pixel temperature tr is from the same site as the pixel value xr, r ∈ S for the
image x.

Before the SR algorithm starts at level l, those pixels which were relaxed at the previous
level, l + 1, are given a pixel temperature ts = 0 ∀ s ∈ S l+1, i.e., complete confidence. The
other pixels have their pixel temperatures initialised to ts = 1 ∀ s 6∈ S l+1, i.e., no confidence.
After a pixel is relaxed, it has its temperature updated. We relate pixel temperature to
pixel confidence, where pixel confidence is associated with the probability that xs is the
correct pixel value for the site s. Full pixel confidence occurs when xs is sampled from an
LCPDF at equilibrium, or when the LCPDF is completely conditional on its neighbouring
pixel values. This occurs when tr = 0, ∀ r ∈ Ns. The confidence associated with the pixel
value xs is then dependent on the pixel temperatures tr, r ∈ Ns. Therefore we use the
formula

ts = max

{

0,
−1 +

∑

r∈Ns
tr

|Ns|

}

(31)

to define the update schedule of the pixel temperature ts for each time the pixel xs is
updated.

Initially, only those sites that had their values relaxed at the previous grid level are
used in the LCPDF. However, as the SR iterations progress, more sites gain a degree of
confidence. When ts = 0, ∀ s ∈ S l, we can say the SR process has reached an equilibrium
state, indicating that the image can be propagated to the next lower grid level. The process
is then repeated at the next grid level l − 1 and so on until the final grid level l = 0 has
undergone constrained SR.

C. Synthesised Textures

We used source images of size 128×128 pixels to estimate the LCPDF from which images
of size 256 × 256 were synthesised via algorithm 1, Fig. 3. A subjective comparison of
the source and resulting synthetic textures, Fig. 4, show that the noncausal nonparametric
multiscale Markov random field texture models form highly representative models of natural
textures. This confirms that the characteristics of the source texture have indeed been
captured by the models.

The results obtained for the strong MRF model, Figs. 4 (a.2) (b.2) and (c.2), suggest that
these textures may be successfully modelled with just third order statistics. Although the
plain nonparametric MRF model has produced better synthesis results, the strong MRF
model is more likely to be the better model for the segmentation and recognition of texture.
This is because it uses lower order statistics, thereby increasing its entropy while retaining
the unique characteristics of the texture [45].

VI. Multiscale Unsupervised Texture Recognition

MRF models have mainly been used for the supervised classification of texture, for
which a library of pre-modelled textures must exist in order for discriminant analysis to
be used. [10], [15], [23], [12], [9]. However, this approach would be cumbersome for SAR
images of the Earth’s terrain as they contain a myriad of different texture types, too many
to be able build a library of pre-modelled textures such that discriminant analysis maybe
performed on an arbitrary image.

We present a new approach to this problem by using our multiscale nonparametric MRF
model to model just one source texture from which we map the probability over an image
of a pixel being of that source texture. We have shown that our MRF model, assessed by
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human vision, is able to synthesise highly representative textures. On this basis, we believe
that the model captures sufficient unique textural characteristics to identify the probability
of any pixel in an image as being of the modelled texture, without the use of discriminant
analysis. This capacity permits segmentation and classification of images with undefined
texture types, i.e., it permits unsupervised texture recognition.

For cases when x is not all of the one texture, Geman and Graffigne [23] classified small
areas of the image assuming they were homogeneous. The classification was made on the
basis that the product of the neighbourhood probabilities over the area of concern resembled
the joint probability for that area, i.e.,

Π(xr, r ∈ Ws) '
∏

Nr⊆Ws

P (xr, xt, t ∈ Nr), (32)

where Ws is the window of sites, centred at s, which are to be used for the classification of
xs.

A. Probability measurement

We found the probability Π(xr, r ∈ Ws) as defined by equation (32) to be unwieldy. This
was because our nonparametric LCPDF tended to give low probabilities for the neighbour-
hood configurations in the classification window, which resulted in Π(xr, r ∈ Ws) being too
susceptible to minor fluctuations in these neighbourhood probabilities. Instead, we used
the set of probabilities defined by the LCPDF for the window Ws, and compared them
directly to the set of probabilities from the source texture.

The probability P (xr, xt, t ∈ Nr) is calculated from equation (12) as

P (xr, xt, t ∈ Nr) =
1

nhd(2π)d/2

∑

p∈Sy,
Np⊂Sy

exp

[

−
1

2h2
(z− Zp)

T(z− Zp)

]

, (33)

where z = [xr, xt, t ∈ Nr]
T and Zp are samples taken from the source texture y defined on the

set of sites Sy. Note, the pixel temperature ts, s ∈ S is not used, and the LCPDF is not nor-
malised. For the strong nonparametric MRF model, we use the simple estimate of equation
(25), where each P (xr, xt, t ∈ C) is calculated in the same way as P (xr, xt, t ∈ Nr) in equa-
tion (33), but based on the clique C rather than the neighbourhood Nr. The set of cliques
is dependent on the neighbourhood size and maximum statistical order requested [38].

The samples of the LCPDF, taken from the window Ws ⊂ S, are the set of probabilities
{P (xr, xt, t ∈ Nr),Nr ⊆ Ws}. We compare these samples directly with the set of proba-
bilities obtainable from the source texture y. For every site q ∈ Sy,Nq ⊂ Sy in the source
texture, a vector z = [yq, yt, t ∈ Nq]

T maybe used to calculate P (yq, yt, t ∈ Nq) via equation
(33), where again the sample vectors Zp are from the source texture y. However, the proba-
bility P (yq, yt, t ∈ Nq) is then biased since the sample Zp = z is included in the estimation.
This bias is removed by excluding that site p = q from the calculation of P (yq, yt, t ∈ Nq).
The set of probabilities {P (yq, yt, t ∈ Nq),Nq ⊂ Sy} from the source texture y is therefore
calculated using the modified formula,

P (yq, yt, t ∈ Nq) =
1

nhd(2π)d/2

∑

p∈Sy−q,
Np⊂Sy

exp

[

−
1

2h2
(z− Zp)

T(z− Zp)

]

. (34)

Given the set of probabilities {P (xr, xt, t ∈ Nr),Nr ⊆ Ws} from the window to be
classified, and the set of probabilities {P (yq, yt, t ∈ Nq), q ∈ Sy,Nq ⊂ Sy} from the source
texture, we can now determine the recognition probability. The null hypothesis is that
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the distribution of probabilities from the window is the same as the distribution from the
source texture. We use the nonparametric Kruskal-Wallis test [33] to test the hypothesis.

The Kruskal-Wallis test is the nonparametric version of the F test [33]. We use the
Kruskal-Wallis test to make inferences about treatment populations, accepting or rejecting
the null hypothesis that the populations come from the same distribution, primarily by
comparing the means. The Kruskal-Wallis statistic K is calculated in terms of the ranks
of the observations rather than their nominal values. Given c populations, each with nj

observations, and sum of ranks equal to Tj, the Kruskal-Wallis statistic K is expressed as

K =
12

nT (nT + 1)

2
∑

j=1

(

T 2
j

nj

)

− 3(nT + 1), (35)

where nT is the sum of the sample sizes.
The sampling distribution of K is approximately chi-squared with c− 1 degrees of free-

dom. The accepted practice is to reject the null hypothesis if K is greater than a particular
confidence level α. Our approach is to instead calculate the confidence associated with
accepting the null hypothesis. This confidence PWs

for a particular window Ws, is

PWs
= P (k ≥ K), (36)

where K is calculated from equation (35) and k is chi-squared-distributed with one degree
of freedom. We use this confidence PWs

to plot our probability map.
The multiscale segmentation and recognition algorithm differs from the multiscale syn-

thesis algorithm, Fig. 3, because we do not constrain the calculation of PWs
for each grid

level. Instead, we simply label the site s with the combined Kruskal-Wallis probabilities
PWs

obtained for each grid level over each site. Since we do not use the Gidas constraint [24]
for segmentation and recognition we may use the alternative multigrid representation of
local averaging. We express the labelling of the site s ∈ S with the combined Kruskal-Wallis
probabilities,

PWs=(i,j)
=

∏

l≥0

P l
Wr

, r =

(

i

2l
,

j

2l

)

∈ Sl, (37)

VII. Segmented and Classified Textures

To prove the performance of our segmentation/recognition algorithm, Fig. 5, we tested it
on images containing a mosaic of sub-images with similar grey levels (see Fig. 6(a) (b)). A
conventional application of a (first order) histogram technique would not able to segment
these. Also a mix of structured and stochastic sub images were chosen to illustrate how
our non parametric technique is able to recognise all types of textures.

The results of the unsupervised segmentation/classification of Fig. 6(a), with respect
to the source textures Figs. 6( .1) ( .2) and ( .3), are shown as the probability maps
Figs. 6(a.1) (a.2) and (a.3), respectively. Fig. 6(b) was segmented and classified with
respect to the source textures Figs. 6( .4) ( .5) and ( .6), and the resulting probability
maps are Figs. 6(b.4) (b.5) and (b.6), respectively. The probability maps are grey scale
images, with white (grey level 255) representing a probability of one, and black (grey level
0) representing zero probability. Only one source texture was used at any one time to form
the probability maps.

The probability maps of Fig. 6 show that with the appropriate texture model it is possible
to segment and recognise windows of texture with respect to just one source texture and
without prior knowledge of the other types of textures in the image. For these maps we
used the strong MRF model with a 3× 3 neighbourhood and pairwise cliques, as this was
identified as being the optimal model for recognition, Table VII. The maps show that the
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TABLE I

Percentage error for unsupervised texture recognition of 100 Vistex Texture mosaics

= percentage area of false negatives + percentage area of false positives. Vistex

Texture mosaics courtesy of Computer Vision Group, Computer Science III, University

Bonn; and Vision Texture Archive of the MIT Media Lab

Quadtree Height Square Neighbourhood Size Clique Size Percentage Error

0 3× 3 - 24.04
0 3× 3 2 15.67
0 3× 3 3 23.70
0 5× 5 - 25.54
0 5× 5 2 14.69
0 5× 5 3 21.45
1 3× 3 - 19.45
1 3× 3 2 ⇒ 12.94 ⇐
1 3× 3 3 18.58
1 5× 5 - 24.38
1 5× 5 2 13.48
1 5× 5 3 18.74
2 3× 3 - 18.40
2 3× 3 2 13.85
2 3× 3 3 17.62
2 5× 5 - 23.98
2 5× 5 2 15.22
2 5× 5 3 19.46
3 3× 3 - 21.79
3 3× 3 2 18.33
3 3× 3 3 21.80
3 5× 5 - 30.33
3 5× 5 2 21.55
3 5× 5 3 25.48

segmentation/recognition algorithm, Fig. 5, is able to discriminate between textures similar
to the source texture and those that are dissimilar.

VIII. Practical Application

The final goal of this research was to produce a method by which an operator may be able
to take a radar satellite image; segment a small portion from the image where the terrain
was known; use this as the source to a texture model; then with respect to the texture model,
find where other similar terrain types lie within the image. Such a method of unsupervised
segmentation and unsupervised recognition would be ideal for terrain mapping of Synthetic
Aperture Radar (SAR) images, as it does not require a complete library of textures as for
discriminant analysis. With our method, any operator may choose which type of texture
they wish to model, without the need for a pre-modelled version existing as part of a library.
The nonparametric MRF model is suited to this type of approach as there is no exhaustive
training required to match the model to the texture. However, as the probability maps
are pre-normalised, best results maybe obtained if the user was to iteratively update the
probability maps for each source texture used.

The practical application of segmenting and classifying a SAR image of Cultana, Fig. 7,
shows the two results if: 1) the operator chose a 64 × 64 patch of trees from the bottom
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left corner, Fig. 8; or 2) the operator chose a 64× 64 patch of grass from the bottom right
corner, Fig. 9. Again we have used the same strong MRF texture model as applied in the
unsupervised segmentation and recognition of the texture mosaics Fig. 6. In both cases the
resulting probability maps have been superimposed on top of the original SAR image. This
gives a clear indication of how the segmentation/recognition algorithm has performed.
The results show the feasibility of such an approach to unsupervised segmentation and
unsupervised recognition of texture for terrain mapping of SAR images.

IX. Summary and Conclusion

The nonparametric Markov random field (MRF) model has been shown to synthesis
representative examples of both structured and stochastic texture. With the multiscale
texture synthesis incorporating our novel pixel temperature function, we were able to use
this model to synthesise realistic realisations of a source texture with minimal phase dis-
continuities. It was with this evidence that we concluded that the nonparametric MRF
model had captured all the unique characteristics specific to a particular texture. It was
considered that with such a model it would be feasible to recognise other similar texture
from an image containing multiple unknown textures. The model was used to classify those
image segments that had similar textural characteristics to a source texture, thereby per-
forming unsupervised texture recognition without prior knowledge of other textures types
present in the image. Such a technique was considered valuable to the practical application
of terrain mapping of SAR images.

A second nonparametric MRF model was proposed, one that was based on the strong
MRF model of Moussouris [36]. This model was shown to be equivalent to the ANOVA
construction [18], from which we were able to derive the general ANOVA construction equa-
tion (22). The strong MRF model was also shown to be able to synthesise representative
versions of a source texture. With this model we were able to limit the statistical order
required to uniquely represent a texture, thereby increasing the entropy of the LCPDF,
which in turn produced a better classification model for unsupervised texture recognition.

The advantage of this unsupervised recognition technique was that it required virtually
no training of the texture models, thereby allowing an end user to specify their own type of
texture to segment and classify on an undetermined image. Also the resulting probability
maps are pre-normalised, allowing the end user to iteratively improve the probability map
with further results from the unsupervised recognition of other source textures. Although
the choice of the strong MRF model should be based on the synthesis results, the texture
synthesis algorithm, Fig. 3, is computationally intensive. However we found the strong
MRF model with a 3 × 3 square neighbourhood and second order cliques was a good
general classification model. As a second order model was found to be the most versatile, in
future work it might be worthwhile to change the model used in the unsupervised texture
recognition to another type of second order model, e.g., like those models based on the
stochastic modelling of various multi-resolution filter responses [5], [45], [28], [37].

Appendix

I. Proof 1 of Proposition 1

This proof is based on the Grimmett [25] and Moussouris [36] equivalence proof for a
standard MRF and a Gibbs distribution. Following the layout presented by Geman [20],
we show that for a strong MRF, Π is a Gibbs distribution with respect to the strong
N -potential,

VA(x) =
∑

B⊆A

(−1)|A|−|B| log PB(x), ∀ x ∈ Ω. (38)
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Moreover, for any element s ∈ A,

VA(x) =
∑

B⊆A,s∈B

(−1)|A|−|B| log PB(xs|x(s)), ∀ x ∈ Ω. (39)

This representation is unique among normalised potentials.
1. Π is Gibbs w.r.t. V : Assuming equation (38) and using the Möbius inversion formula
(4),

PA(x) = exp
∑

B⊆A

VB(x), (40)

where A is any subset A ⊆ S. This is the second condition imposed on the two functions
P and V . The first condition is implied from equation (16) for which, given two subsets A
and B of S such that B ⊆ A ⊆ S, then

log PB(x) = log
∑

yA∈Ω,
yB=xB

PA(y) = log
∑

yA∈Ω,
yB=xB

exp
∑

C⊆A

VC(y)

=
∑

C⊆B

VC(x) + log
∑

yA∈Ω,
yB=xB

exp









∑

C⊆A,
C 6⊆B

VC(y)









. (41)

Now, since equation (40) is a function defined for all A ⊆ S,

log PB(x) =
∑

C⊆B

VC(x), (42)

which implies equation (40) and (41) are true if the condition,

∑

yA∈Ω,
yB=xB

exp









∑

C⊆A,
C 6⊆B

VC(y)









= 1 ∀ x ∈ Ω, (43)

holds for B ⊆ A ⊆ S.
2. V is normalised: The potential V , defined by equation (38), is not normalised in the
conventional manner. In the original proof for a standard MRF, the potentials were said to
be normalised if VA(x) = 0 if xs = 0 for any s ∈ A. For the potential defined by equation
(38), this is not the case. However,

V∅(x) =
∑

B⊆∅

(−1)|∅|−|B| log PB(x) = log P∅(x) = log 1 = 0. (44)

Therefore, although the potential V is not normalised in the conventionally manner, there
is a degree of uniformity in the construction of the potential functions.
3. (38) ⇔ (39): For any s ∈ A,

VA(x) =
∑

B⊆A,s∈B

(−1)|A|−|B| log PB(x) +
∑

B⊆A,s6∈B

(−1)|A|−|B| log PB(x)

=
∑

B⊆A,s∈B

(−1)|A|−|B|(log PB(x)− log PB−s(x))

=
∑

B⊆A,s∈B

(−1)|A|−|B| log PB(xs|x(s)). (45)
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4. V is a strong N -potential: Given that x is defined on a strong MRF with respect to N ,
then V is a strong N -potential if VA(x) = 0 ∀ A 6∈ C.

We choose A 6∈ C. Then ∃s, t ∈ A such that t 6∈ Ns ⇔ s 6∈ Nt.

VA(x) =
∑

B⊆A

(−1)|A|−|B| log PB(x)

=
∑

B⊆A−s−t

(−1)|A|−|B| log PB(x) +
∑

B⊆A−s−t

(−1)|A|−|B+s| log PB+s(x)

+
∑

B⊆A−s−t

(−1)|A|−|B+t| log PB+t(x) +
∑

B⊆A−s−t

(−1)|A|−|B+s+t| log PB+s+t(x)

=
∑

B⊆A−s−t

(−1)|A|−|B| log

[

PB(x)PB+s+t(x)

PB+s(x)PB+t(x)

]

= 0, (46)

from identity (18) for a strong MRF. Therefore,

log PA(x) =
∑

C⊆A,
C∈C

VC(x). (47)

This means that for a strong MRF, the Gibbs distribution Π may be expressed with respect
to N -potentials (38) or (39).

2

The first part of Proposition 1, the probability decomposition of equation (20) is proved
by applying Möbius inversion formula (5) to equation (38) over the set of sites {s, r ∈ Ns}:

log P (xs, xr, r ∈ Ns) =
∑

C⊆Ns+s

∑

C′⊆C

(−1)|C|−|C′| log PC′(x). (48)

As the probability decomposition is over the set of cliques defined on the sites {s, r ∈ Ns},
any clique C ′ ⊆ N is always contained in a larger clique C, s ∈ C for which C ′ ⊂ C. It is
easy to prove that all the probabilities defined on cliques C ′ that do not contain the site s
are cancelled out in the probability decomposition summation (48) giving

log P (xs, xr, r ∈ Ns) =
∑

C∈Cs

∑

C′⊆C,
s∈C′

(−1)|C|−|C′| log PC′(x). (49)

However, this is only true if the cliques are not arbitrarily restricted to being of a certain
type (i.e., say only those cliques C ∈ Cs for which |C| ≤ 3). Otherwise only equation (48)
is valid.

The probability decomposition of equation (21), is proved by applying the Möbius inver-
sion formula (5) to equation (39) giving

log P (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

C′⊆C,
s∈C′

(−1)|C|−|C′| log PC′(xs|x(s)) (50)

2
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II. Proof 2 of Proposition 1

This proof is based on the ANOVA construction [18] for testing independence in a dis-
tribution. In ANOVA-type notation, the probability P (xs, xr, r ∈ Ns) is decomposed into
the general log-linear model [18, p 29]:

log P (xs, xr, r ∈ Ns) = log PA(x) =
∑

B⊆A

UB(x). (51)

We now make a slight change in notation to make the proceeding expressions easier to
comprehend. First, let PA(x) = P (xs, xr, r ∈ Ns), where A is specifically defined as
A = {s, r ∈ Ns}, and then redefine x to be on the smaller lattice A rather than S, such
that

x ∈ ΩA ,where ΩA = Λ|A|. (52)

In the ANOVA log-linear model,
∑

C⊆B UC(x) represents the mean of the logarithmic

probabilities log PA(y), y ∈ ΩA for which yB = xB :

∑

C⊆B

UC(x) =
∑

y∈ΩA,
yB=xB

log PA(y)

|ΩA|
. (53)

Then, U∅ is the grand mean of the logarithmic probabilities:

U∅(x) =
∑

y∈ΩA

log PA(y)

|ΩA|
. (54)

Note that the value of U∅ 6= V∅ from equation (44).
From equation (53), it is apparent that UB(x) represents the deviation from the mean

∑

C⊂B UC(x) for those y ∈ ΩA for which yB = xB. Therefore,

∑

xs∈Λ

UB(xs, x(s)) = 0 ∀ s ∈ B. (55)

Given that x is defined on a strong MRF with respect to N , then U is a strong N -
potential if UB(x) = 0 ∀ B 6∈ C. For B 6∈ C ∃s, t ∈ B such that t 6∈ Ns ⇔ s 6∈ Nt.

UB(x) =
∑

y∈ΩA,
yB=xB

log PA(y)

|ΩA|
−

∑

C⊂B

UC(x)

=
∑

y∈ΩA,
yB=xB

log PA(y)

|ΩA|
−

∑

C⊆B−s

UC(x)−
∑

C⊆B−t

UC(x) +
∑

C⊆B−s−t

UC(x)

=
∑

y∈ΩA,
yB=xB

log PA(y)

|ΩA|
−

∑

y∈ΩA,
yB−s=xB−s

log PA(y)

|ΩA|

−
∑

y∈ΩA,
yB−t=xB−t

log PA(y)

|ΩA|
+

∑

y∈ΩA,
yB−s−t=xB−s−t

log PA(y)

|ΩA|

=
1

|ΩA|

∑

y∈ΩA,
yB−s−t=xB−s−t

log

[

PA(xs, xt, y(s,t))PA(y)

PA(xs, y(s))PA(xt, y(t))

]
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=
1

|ΩA|

∑

y∈ΩA,
yB−s−t=xB−s−t

log

[

P (xs|xt, y(s,t))P (xt, y(s,t))P (ys|y(s))P (y(s))

P (xs|y(s))P (y(s))P (ys|xt, y(s,t))P (xt, y(s,t))

]

= 0 (56)

From equation (56), UB(x) = 0 ∀ B 6∈ C since, for a strong MRF, P (xs|xt, y(s,t)) = P (xs|y(s))
and, similarly, P (ys|xt, y(s,t)) = P (ys|y(s)) from the strong MRF identity (18). Therefore,
for a strong MRF, the ANOVA log-linear model may be rewritten as

log P (xs, xr, r ∈ Ns) = log PA =
∑

C⊆A,
C∈C

UC(x). (57)

The ANOVA log-linear model, like the strong MRF model, specifies the probability
PA(x) as being constructed from potentials defined on interacting subsets C ⊆ A, C ∈ C.
However, in the ANOVA log-linear model, the functions UC(x) are not potentials, but
represent successive deviations from the mean. The similarity of the two models is that
both build their estimate of the probability PA(x) from information obtained from the same
interacting subsets C ⊆ A, C ∈ C.

Comparing equations (47) and (57), both the strong MRF model and the ANOVA log-
linear model restrict the construction of PA(x) over functions defined on cliques. However,
the functions themselves are not the same. This is evident when the Möbius inversion
formula (4) is applied to equation (53) to obtain

UC(x) =
∑

C′⊆C

(−1)|C|−|C′|
∑

y∈ΩA,

yC′
=xC′

log PA(y)

|ΩA|
. (58)

Recalling from equation (41) that for any set of functions U where equation (57) is true,

log PB(x) =
∑

C⊆B

UC(x) + log
∑

y∈ΩA,
yB=xB

exp









∑

C⊆A,
C 6⊆B

UC(y)









. (59)

Again, if condition (43) holds, and substituting equation (53) into (59),

log PB(x) =
∑

C⊆B

UC(x) =
∑

y∈ΩA,
yB=xB

log PA(y)

|ΩA|
. (60)

Therefore equation (58) may be rewritten as

UC(x) =
∑

C′⊆C

(−1)|C|−|C′| log PC′(x). (61)

Substituting equation (61) into (57), the ANOVA log-linear model forms the same proba-
bility decomposition as for a strong MRF:

log PA(x) =
∑

C⊆A,
C∈C

∑

C′⊆C

(−1)|C|−|C′| log PC′(x). (62)

Since equation (62) is equivalent to (48), the rest of the proof follows for equation (21) and
(20) as by the first proof of Proposition 1.

2
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Algorithm 1: Nonparametric multiscale MRF texture synthesis
Input:

y ← source texture image
Ny ×My ← size of source image y
Nx ×Mx ← size of synthetic image x
o← order of the neighbourhood system

Begin

1. Define number of grid levels M as, M ≤ 1 + log2 (min {Nx, Mx, Ny, My}).
2. Define image x as being on a set of sites S as given by (27).
3. Define the multigrid representation of image x as the set of subset of sites S l ⊆ S for

0 ≤ l < M as given by (28).

4. Similarly, define image y as being on a set of sites, Sy (27), with a multigrid repre-
sentation as the set of subset of sites S l

y ⊆ S for 0 ≤ l < M as given by (28).

5. Initialise pixel temperatures ts = 1, ∀ s ∈ S.
6. For l = M − 1 to 0 do

6.1. Define neighbourhood N l
s w.r.t. order o as given by (29).

6.2. While ts 6= 0, ∀ s ∈ S l do

6.2.1. choose a set of sites Si.i.d. = {s ∈ S,N l
s

⋂

Si.i.d. = ∅, ts > 0}.
6.2.2. For all s ∈ Si.i.d. in parallel do

6.2.2.1. Estimate the LCPDF for xs = λ, ∀ λ ∈ Λ via (12), or (25) for the strong
LCPDF. In both cases (z− Zp) is defined by (30).

6.2.2.2. Choose new xs by sampling its LCPDF, as in Gibbs Sampler, or choose the mode
as in ICM.

6.2.2.3. Update ts via (31).
6.2.3. done

6.3. done

7. done

end

Fig. 3. Parallel implementation of our nonparametric multiscale MRF texture synthesis algorithm
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(a) (a.1) (a.2)

(b) (b.1) (b.2)

(c) (c.1) (c.2)

Fig. 4. Brodatz textures: (a) D21 - French canvas; (b) D22 - Reptile skin; (c) D77 - Cotton canvas; (?.1)
synthesised textures - MRF model, neighbourhood order o = 18; (?.2) synthesised textures - strong MRF
model, neighbourhood order o = 8 and limited to 3rd order cliques.
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Algorithm 2: Nonparametric multiscale MRF texture segmentation/recognition
Input:

x← input image
y ← source texture image
Nx ×Mx ← size of input image x
Ny ×My ← size of source image y
o← order of the neighbourhood system
Ws ← classification window

begin

1. Define number of grid levels M as, M ≤ 1 + log2 (min {Nx, Mx, Ny, My}).
2. Define probability map xL and image x as being on a set of sites S as given by (27).
3. Define the multigrid representation of the image, x, as the set of im-

ages, xl =
{

xl
s = (xl−1

2i,2j + xl−1
2i+1,2j + xl−1

2i,2j+1 + xl−1
2i+1,2j+1)/4, s = (i, j) ∈ S l

}

, where

Sl =
{

s = (i, j) : 0 ≤ i < Nx/2l, 0 ≤ j < Mx/2l
}

, for 0 ≤ l < M .

4. Similarly, define the multigrid representation of the image, y, as the set of images, y l

on the sites S l
y for grid levels 0 ≤ l < M .

5. Define neighbourhood N w.r.t. order o via (3).
6. Initialise probability map to xL = {xL

s = 1, s ∈ S}.
7. For l = M − 1 to 0 do

7.1. Obtain the set of LCPDF samples {P l(yl
q, y

l
t, t ∈ Nq),Nq ⊂ Sl

y} from the source

image yl via (34).

7.2. For all s ∈ S l in parallel do

7.2.1. Calculate P l(xl
s, x

l
r, r ∈ Ns) via (33).

7.2.2. Calculate the Kruskal-Wallis Probability P l
Ws

from (36) via (35).
7.2.3. Correct edge and boundary effects by equating P l

Ws
= maxr∈Ws

P l
Wr

, Wr ⊂ Sl.
7.2.4. Label all xL

r = xL
r .P l

Ws
, for which r = (p, q) ∈ S, s = (p/2l, q/2l).

7.3. done

8. done

end

Fig. 5. Parallel implementation of our nonparametric multiscale MRF texture segmentation/recognition
algorithm
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(a) (b)

( .1) (a.1) ( .4) (b.4)

( .2) (a.2) ( .5) (b.5)

( .3) (a.3) ( .6) (b.6)

Probability scale 0 1

Fig. 6. Probability maps of Brodatz texture mosaics (a) and (b): ( .1) D3 - Reptile skin; ( .2) D15 -
Straw; ( .3) D57 - Handmade paper; (a.1) (a.2) (a.3) the respective probability maps of (a); ( .4) D17 -
Herringbone weave; ( .5) D84 - Raffia; ( .3) D29 - Beach sand; (b.4) (b.5) (b.6) the respective probability
maps of (b).
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Fig. 7. Airborne SAR image of Cultana.

Fig. 8. Probability map of the trees superimposed
on to Cultana image.

Fig. 9. Probability map of the grass superimposed
on to Cultana image.


