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Abstract— Our noncausal, nonparametric, multi-
scale, Markov random field (MRF) model is capa-
ble of synthesising and capturing the characteris-
tics of a wide variety of textures, from the highly
structured to the stochastic. We use a multiscale
synthesis algorithm incorporating local annealing to
obtain larger realisations of texture visually indis-
tinguishable from the training texture.

Keywords— Markov random fields, Nonparamet-
ric estimation, Texture synthesis, Multi-resolution,
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I. Introduction

WE present here a method of modelling tex-
ture which enables synthesis of texture vi-

sually indistinguishable from training textures.
Our noncausal, nonparametric multiscale Markov
Random Field model captures the high-order sta-
tistical characteristics of textures. We propose
that if a model is capable of synthesising tex-
ture visually indistinguishable from its training
texture, then it has captured all the visual char-
acteristics of that texture and must therefore be
unique to that particular texture. Given a set of
unique statistical models for a set of training tex-
tures, it may then be possible to use these mod-
els to segment and classify textures in images that
contain a myriad of textures including unmodelled
textures. Classification could be achieved by us-
ing these unique statistical models to determine
the statistical similarity of a region in the image
to a training texture. Any region where there was
no statistical similarity could then be labelled as
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an unknown texture.

The conventional approach to classifying tex-
ture is to develop texture models from textural
features until all textures in a training set are cor-
rectly classified [17]. Texture models are refined
by choosing the most discriminatory features from
the training textures via a feature selection pro-
cess such as linear discriminatory analysis. How-
ever, when a new texture is added to the training
set, the features selected may not be those ap-
propriate for distinguishing the new texture from
the previously modelled textures. Therefore, for
each new texture, the selection process has to be
repeated to obtain a new set of discriminatory fea-
tures. Another limitation of conventional models
is they cannot be applied to images containing tex-
tures other than those in the training sets. There-
fore, they cannot be used to classify complex im-
ages such as Synthetic Aperture Radar images of
Earth’s terrain which contain a myriad of textures.

Current texture models such as fractal models,
auto-models, autoregressive models, moving aver-
age models, autoregressive moving average mod-
els, do not realistically reproduce natural tex-
tures [9], such as those in the Brodatz album [4].
This implies the models do not capture all the
visual characteristics. Julesz [11] hypothesised
that third- or higher-order models were required
to model natural textures. The MRF model has
the required statistical order [1], but the paramet-
ric versions are inheritly inaccurate for modelling
high-order statistical characteristics over a data
sparse multi-dimensional feature space. This hap-
pens to be less of a problem for the nonparametric
model.

Our nonparametric MRF model captures suffi-
cient higher order statistical characteristics of tex-
ture to synthesise realistic textures from the Bro-
datz album. Based on the only criteria available
to judge the success of a model – visual compari-
son of synthesised textures with training textures
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– we conclude that our model captures all of the
visual characteristics of a texture. (The synthesis
process is facilitated by incorporating a novel lo-
cal annealing function into a multiscale synthesis
algorithm.) For any texture it is applied to, the
model provides a unique statistical model of that
texture. This means it can be used for texture
classification of images containing textures not in
the training set. Thus, the model may be able to
extend the application of texture classification to
images such as Synthetic Aperture Radar images.

II. Markov Random Field Texture

Model

MRF models have been used for texture synthe-
sis, region segmentation and image restoration [6].
The property of an MRF is that a variable Xs, at
site s on a lattice S = {s = (i, j) : 0 ≤ i, j < M},
can be equal to any value xs ∈ Λs, but the prob-
ability of Xs = xs depends upon values xr at
sites neighbouring s. The neighbouring sites are
defined as those sites r ∈ Ns ⊂ S, where Ns

represents the neighbourhood of s. The neigh-

bourhood system is the set of all neighbourhoods
N = {Ns ⊂ S, s ∈ S}. The MRF is then defined
by the local conditional probability density func-

tion (LCPDF) with respect to the neighbourhood
system N [1], [7]:

P (Xs = xs|Xr = xr, r 6= s) =

P (xs|xr, r ∈ Ns) s ∈ S, xs ∈ Λs. (1)

To model a digital image as an MRF, consider
each pixel in the image as a site s on a lattice S,
and the grey scale value associated with the pixel
equal to the value xs. The site value xs is then
contained in the state space Λ

.
= {0, 1, 2, . . . , L −

1}, where L is the number of grey levels in the
image. The configuration space Ω for the set of
variables X = {Xs, s ∈ S} is the set of all possible
images x = (x1, x2, . . . , xM×M), where

x ∈ Ω = ΛM×M . (2)

Let Π be the (joint) probability measure on Ω
with Π(X = x) > 0 ∀x ∈ Ω. Besag [1, p 195]
proved that the joint distribution Π(x) is uniquely
determined by its LCPDF. The “Hammersley-
Clifford theorem” [1], [6], also known as the
“Markov-Gibbs equivalence theorem”, gives form

to the LCPDF so as to define a valid joint dis-
tribution Π(x). The theorem requires a condition
of the neighbourhood system N = {Ns, s ∈ S}
such that s ∈ Nt ⇔ t ∈ Ns. This means the
neighbourhoods must be symmetrical for a homo-
geneous MRF. The symmetrical neighbourhood
systems employed in this paper are those of Ge-
man and Geman [7] for which the neighbourhood
system N o = {N o

s , s = (i, j) ∈ S} is defined as

N o
s = {r = (k, l) ∈ S : 0 < (k− i)2 +(l− j)2 ≤ o},

(3)
where o refers to the order of the neighbourhood
system. Neighbourhood systems for o = 1, 2 and 8
are shown in Figs. 1 (a), (b), and (c) respectively.

(a) (b) (c)

Fig. 1. Neighbourhoods. (a) The first order neighbour-
hood o = 1 or “nearest-neighbour” neighbourhood for the
site s = (i, j) = ‘•’ and r = (k, l) ∈ Ns = ‘◦’; (b) second or-
der neighbourhood o = 2; (c) eighth order neighbourhood
o = 8.

III. Nonparametric MRF Model

Given a sample image y ∈ Ω of a homogeneous
texture, and a predefined neighbourhood system
N defined on a lattice Sy, a nonparametric esti-
mate of the LCPDF can be obtained by building
a multi-dimensional histogram of y. First, denote
a pixel value as L0, where L0 ∈ Λ. Given that
L0 represents the pixel value at a site p ∈ Sy, de-
note pixel values Lnr

∈ Λ for each site r ∈ Np.
The indices nr are integers representing the rel-
ative position of r to p for which 1 ≤ nr ≤ N ,
where N = |Np| is the number of sites in the
neighbourhood Np. Then the set of pixel values
{L0, . . . , LN} represents a realisation of a pixel
and its neighbours irrespective of the pixel loca-
tion p ∈ Sy.

Let F (L0, . . . , LN ) denote the frequency of oc-
currence of the set of grey levels {L0, . . . , LN} in
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the image y. The frequency is calculated from the
image y as

F (L0, . . . , LN ) =
∑

p∈Sy,
Np⊂Sy

δ(yp −L0)
∏

r∈Np

δ(yr −Lnr
),

(4)
where δ is the Kronecker function. The set
of frequencies F (L0, . . . , LN ) ∀ L0, . . . , LN ∈ Λ
forms the multi-dimensional histogram, where
each Ln, 0 ≤ n ≤ N is located on its own sep-
arate dimension (or axis) of the histogram. The
total number of dimensions is the statistical or-
der of the model and is equal to the size of the
neighbourhood. The LCPDF is estimated from
the multi-dimensional histogram as

P̂ (xs|xr, r ∈ Ns) =
F (L0 = xs, Lnr

= xr, r ∈ Ns)
∑

L0∈Λ F (L0, Lnr
= xr, r ∈ Ns)

.

(5)
An example of a two dimensional histogram for
the neighbourhood system N = {Ns = {s − 1}}
(Fig. 2(a)) is shown in Fig. 2(b).
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Fig. 2. Neighbourhood and its 2-D histogram

The true LCPDF needs to be estimated from
the multi-dimensional histogram. When the sam-
ple data is sparsely dispersed over the histogram
space, nonparametric estimation tends to be more
reliable than parametric estimation if the under-
lying true distribution is unknown [15]. How-
ever with nonparametric estimation, the LCPDF
may no longer define a valid joint distribution Π.
Whereas with parametric estimation, the underly-
ing true shape of the distribution may be compro-
mised by trying to fit the parametric function to
the data.

A. Parzen-Window Density Estimator

The Parzen-window density estimator [15] has
the effect of spreading each sample datum into

a smooth multi-dimensional histogram over a
larger area. Denoting the sample data as
Zp = Col[yp, yr, r ∈ Np] p ∈ Sy,Np ⊂ Sy,
the Parzen-window density estimated frequency
F̂ (z = Col[L0 = xs, Lnr

= xr, r ∈ Ns]) of F in
(5) is:

F̂ (z) =
1

nhd

∑

p∈Sy,Np⊂Sy

K

{

1

h
(z− Zp)

}

, (6)

where n is the number of sample data Zp, h is the
window parameter, and d = |Ns|+1 is the number
of elements in the vector z [15, p 76].

The shape of the smoothing is defined by the
kernel function K. We chose K as the standard
multi-dimensional Gaussian density function,

K(z) =
1

(2π)d/2
exp(−

1

2
zTz). (7)

The size of K is defined by the window param-
eter h. The aim is to choose h so as to obtain
the best estimate of the frequency distribution F̂

for the LCPDF. Silverman [15, p 85] provides an
optimal window parameter:

hopt = σ

{

4

n(2d + 1)

}1/(d+4)

, (8)

where σ2 is the average marginal variance. In our
case, marginal variance is the same in each dimen-
sion and therefore σ2 equals the variance associ-
ated with the one-dimensional histogram.

IV. Multiscale Texture Synthesis

There have been quite a few attempts to syn-
thesise textures with a multiscale algorithm [12],
but none have successfully reproduced natural
textures [4]. Two noteworthy attempts were by
Popat and Picard [14] and Heeger and Bergen [10].
Although the stochastic textures synthesised by
Heeger and Bergen are impressive, their model
only incorporated second order statistics which we
believe to be inadequate for synthesising highly
structured natural textures. Popat and Picard
used higher-order statistics with much greater suc-
cess. In fact, our approach is similar to theirs,
but whereas their synthetic textures suffered from
phase discontinuity, we used our method of local

annealing to synthesise highly representative ex-
amples of natural textures.
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We perform texture synthesis via a multiscale
synthesis algorithm incorporating local annealing

in the form of a novel pixel temperature function.
As part of the synthesis process, the pixel temper-
ature function reduces the dimensionality of the
multi-dimensional histogram which, in turn, alle-
viates the problem associated with estimating the
model in a high-dimensional space. This means
we are able to use large neighbourhood systems to
represent the texture.

We can synthesise a texture from an MRF
model by a method known as stochastic relaxation
(SR) [7]. This is done by starting with any image
and iteratively updating pixels in the image with
respect to the LCPDF. This generates a sequence
of images {x(0),x(1), . . . ,x(n)} with the property,

lim
n→∞

P (x(n)|x(0)) = Π(x(n)) ∀ x ∈ Ω. (9)

A well-known SR algorithm is the Gibbs sam-
pler [7]. Besag [2] also introduced a deterministic
relaxation algorithm called Iterative Conditional

Modes (ICM). Either algorithm is adequate for
synthesising texture.

A. Multiscale Relaxation

A problem with the single-scale relaxation pro-
cess is that global image characteristics evolve in-
directly in the relaxation process [8], [16]. Global
image characteristics are typically only propa-
gated across the image lattice by local interactions
and therefore evolve slowly, requiring long relax-
ation times to obtain equilibrium, as defined by
equation (9). With multiscale relaxation (MR),
we attempt to overcome this problem by imple-
menting SR, first at a low resolution, and then at
progressively higher resolutions [8]. The informa-
tion obtained from SR at one resolution is used to
constrain the SR at the next highest resolution.
By this method, global image characteristics that
have been resolved at a low resolution are infused
into the relaxation process at the higher resolu-
tions. This helps reduce the number of iterations
required to obtain equilibrium [16]. MR also helps
the ICM algorithm converge to an image closer to
the global maximum of the joint distribution Π [3],
[5].

The multiscale model may be best described by
a multigrid representation of the image, as shown
in Fig. 3. The grid at level l = 0 represents the

l = 0

l = 1

l = 2

?

increasing
image

resolution

Fig. 3. Grid organisation for MR via decimation.

image at the original resolution, where each inter-
section point ‘•’ is a site s ∈ S. The lower reso-
lutions, or higher grid levels l > 0, are decimated
versions of the image at level l = 0. The multigrid
representation of the image x is then the set of
images xl, for grid levels l ≥ 0. The image xl is
defined on the lattice S l ⊂ S, where

Sl =

{

s = (2li, 2lj) : 0 ≤ i, j <
M

2l

}

. (10)

The set of sites S l at level l represents a decima-
tion of the previous set of sites S l−1 at the lower
grid level l − 1. On this multiscale lattice repre-
sentation, we need to redefine the neighbourhood
system for each grid level l ≥ 0 with respect to
order o as

N l
s=(2li,2lj) =

{

r = (2lp, 2lq) ∈ Sl : 0 < (i − p)2 + (j − q)2 ≤ o
}

.

(11)

We use the MR algorithm proposed by Gidas [8],
which maintains the constraint imposed by the im-
age xl+1 through the entire SR process at level l

and proceeding levels. The constraint is such that,
at any point through the SR process at level l, the
image xl+1 may still be obtained from xl by the
multigrid representation. As we used decimation
to form each grid level, the MR constraint is main-
tained at level l by not performing SR on those
sites s ∈ S l+1 ⊂ Sl, as defined by equation (10).

To better incorporate the MR constraint into
the SR process, we introduce a novel pixel tem-
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perature function, which defines how the MR con-
straint is imposed on the SR process. The function
produces an equilibrium state which can be used
to determine when to terminate the SR process at
one level and start it at the next level. The novel
pixel temperature function also reduces phase dis-
continuities [13].

B. Pixel Temperature Function

Our aim in incorporating the pixel temperature
function is to define the degree of confidence that a
pixel has the correct value. Each pixel is given its
own temperature ts, representing the confidence
associated with the pixel xs. The confidence is ex-
pressed as a value 0 ≤ ts ≤ 1, where 0 represents
complete confidence, and 1 none at all. We have
chosen this representation of the pixel tempera-
ture function to relate it to the global temperature
function T , as used in stochastic annealing [7]. In
fact, the function of our local pixel temperature
may be regarded as an implementation of local an-

nealing in the relaxation process.
In the MR algorithm, the confidence or temper-

ature associated with each pixel is used to condi-
tion the LCPDF so as to be strongest on those
pixels with ts = 0, and weakest for those with
ts = 1. The pixel temperature is incorporated into
the LCPDF by modifying the form of (z − Zp)
in equation (6). Given that the LCPDF is esti-
mated for an image x at the site s ∈ S, the vector
z = Col[xs, xr, r ∈ Ns]. The sample data Zp is
taken from a sample image y defined on the lat-
tice Sy, where Zp = Col[yp, yr, r ∈ Np] p ∈ Sy,
and

(z− Zp) = Col[xs − yp, (xr − yr)(1 − tr), r ∈ Ns],
(12)

where the pixel temperature tr is from the same
site as the pixel value xr, r ∈ S for the image x.

Before the SR algorithm starts at level l, those
pixels which were relaxed at the previous level,
l + 1, are given a pixel temperature ts = 0 ∀ s ∈
Sl+1, i.e. complete confidence. The other pixels
have their pixel temperatures initialised to ts =
1 ∀ s 6∈ Sl+1, i.e. no confidence. After a pixel is
relaxed, it has its temperature updated. We relate
pixel temperature to pixel confidence, where pixel
confidence is associated with the probability that
xs is the correct pixel value for the site s. Full
pixel confidence occurs when xs is sampled from

an LCPDF at equilibrium, or when the LCPDF is
completely conditional on its neighbouring pixel
values. This occurs when tr = 0, ∀ r ∈ Ns. The
confidence associated with the pixel value xs is
then dependent on the pixel temperatures tr, r ∈
Ns. Therefore, the formula

ts = max

{

0,
ξ +

∑

r∈Ns
tr

|Ns|

}

, ξ < 0 (13)

is used to describe the confidence associated with
a pixel value xs after it has been relaxed.

Initially, only those sites that had their values
relaxed at the previous grid level are used in the
LCPDF. However, as the SR iterations progress,
more sites gain a degree of confidence. When ts =
0, ∀ s ∈ Sl, we can say the SR process has reached
an equilibrium state, indicating that the image can
be propagated to the next lower grid level. The
process is then repeated at the next grid level l−1
and so on until the final grid level is reached.

C. Parallel Implementation

In our experiments, we synthesised textures on
a multiprocessor machine, DECmpp 12000 (Mas-
Par) r, with 16384 processors in a parallelised
array. This is very useful for image processing
applications, as each processor in the parallelised
array can be dedicated to a single pixel in the im-
age. Up to 16384 pixels can be relaxed in one
iteration. This is an advantage when applying SR
with our nonparametric LCPDF, as the LCPDF
has to be derived directly from the sample data
for each pixel iteration, which in itself is compu-
tationally intensive.

A relaxation algorithm may be parallelised if
the relaxation of a single pixel is conditionally in-
dependent of other pixels. Only those sites

Si.i.d. = {s ∈ S : r 6∈ Si.i.d. ∀ r ∈ Ns} (14)

should be simultaneously relaxed. In other words,
no neighbouring sites should be simultaneously re-
laxed. If all sites were simultaneously relaxed,
Besag [2] suggests that oscillations in the site
representation may result. In fact for the Ising
model [1], we found simultaneous relaxation of all
sites to be detrimental.
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Algorithm 1: Nonparametric multiscale MRF texture synthesis
Input:
Y ← the textured image to be modelled
My ×My ← size of image Y
Mx ×Mx ← size of synthetic image X
o← the order of the neighbourhood system

begin
1. Define number of grid levels M ≤ 1 + log

2
(min {Mx, My}).

2. Define image X as being on a set of sites S = {s = (i, j) :
0 ≤ i, j < Mx}.

3. Define the multigrid representation of image X as the set of
subset of sites Sl ⊆ S for 0 ≤ l < M as given by (10).

4. Similarly, define image Y as being on a set of sites, Sy =
{p = (i, j) : 0 ≤ i, j < My}, with a multigrid representation
as the set of subset of sites Sl

y ⊆ Sy for 0 ≤ l < M as given
by (10).

5. Initialise pixel temperatures ts = 1, ∀ s ∈ S.
6. For l = M − 1 to 0 do
6.1 Define neighbourhood N l

s w.r.t. order o as given by (11).
6.2 While ts 6= 0, ∀ s ∈ Sl do
6.2.1 choose a set of i.i.d. sites Si.i.d. ⊂ Sl from (14) for which

ts > 0.
6.2.2 For all s ∈ Si.i.d. in parallel do
6.2.2.1 Estimate the LCPDF for xs via (6), with (z − Zp)

defined by (12).
6.2.2.2 Choose a new xs by sampling its LCPDF, as in the

Gibbs Sampler, or ICM algorithm.
6.2.2.3 Update ts via (13).
6.2.3 done
6.3 done
7. done
end

Fig. 4. Nonparametric multiscale MRF texture synthesis
algorithm

V. Results

The textures presented in Figs 5 and 6 were syn-
thesised with the multiscale texture synthesis al-
gorithm outlined in Fig. 4. In Fig. 5 we show the
progressive realisations for the MR algorithm on a
Brodatz texture at each grid level. This shows how
the MR algorithm infuses the global to the local
characteristics of a sample texture into a synthetic
texture. Fig. 6 demonstrates the wide range of tex-
tures – from the stochastic to the well structured
– that we were able to synthesise. Best results
for the structured textures were obtained with the
higher order neighbourhood N 18. In all cases the
sample texture images were of size 128×128 pixels
which we used to estimate the LCPDF from which
we synthesised images of size 256 × 256. In this
way, we confirmed that the characteristics of the
texture from the sample image had indeed been
captured by the model.

VI. Conclusion

We have shown that the nonparametric MRF
model presented here can synthesise complex tex-
tures ranging from the stochastic to the well struc-
tured. Although an excellent technique for synthe-
sising texture, its application may be limited for
now by high computational load.

The range of textures synthesised, and the vi-
sual similarity of synthesised to sample textures,
indicates that the nonparametric MRF model cap-
tures all of the visual characteristics of textures.
However, it may also capture superfluous noise
characteristics. To perform segmentation and
classification of images containing unknown tex-
tures, the model should only use those characteris-
tics which identify particular texture classes. Oth-
erwise, it will separate out textures with different
noise characteristics that are of the same texture
class. This is a problem we will address with fu-
ture work.
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