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Extracting the Cliques from a Neighbourhood

System

Rupert Paget and Dennis Longstaff

Abstract—A method is proposed for obtaining the

local clique set from a neighbourhood system. The

Markov random field model, which is used exten-

sively in image processing, is defined with respect

to a neighbourhood system. The mathematical in-

terpretation of the model is defined with respect

to the corresponding clique set. We present a sys-

tematic method for extracting the complete local

clique set from any neighbourhood system on which

a Markov random field maybe defined.
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I. Introduction

Markov Random Field (MRF) models are used
in image restoration [5], region segmentation [4]
and texture analysis [2]. However the preferred
method of analysis in these applications is to use
the equivalent Gibbs Random Field model. To
obtain this Gibbs model it is first necessary to
extract the local clique set from the neighbour-
hood system defined by the MRF model. This is
a complex combinational problem for large neigh-
bourhood systems for which we propose a method
to systematically extract the local clique set from
any neighbourhood system. Although in prac-
tice mostly small neighbourhood systems are used,
which may not necessarily benefit from this sys-
tematic method of extraction, we found it invalu-
able in our experiments when we were able to use
large neighbourhood systems for nonparametric
MRFs.

The property of an MRF is that given a point
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on a lattice, the probability of that point being
set to any particular value is conditional upon the
values of its “neighbouring” points defined by a
neighbourhood system. In other words, the MRF
is characterised by a local conditional probabil-
ity function defined with respect to a neighbour-
hood system. An equivalent Gibbs Random Field
defines its probability function over a set of lo-
cal cliques which are subsets of the neighbouring
points [1].

II. Neighbourhoods and their Cliques

A comprehensive examination of Markov ran-
dom fields is given by [3]. In this section a brief
overview of the MRF theory is presented in order
to give the necessary background on neighbour-
hoods and their respective cliques.

Denote a set of sites on a lattice by S, and the
neighbourhood system over S as G = {Gs, s ∈ S},
where Gs is the set of “neighbours” for s such that
Gs ⊂ S, s 6∈ Gs. Given the random variable Xs at
site s with value xs, the local conditional probabil-
ity function of a MRF with respect to the neigh-
bourhood system G is defined by the Hammersley
and Clifford theorem [1] as,

P (Xs = xs|Xr = xr, r ∈ Gs) =
1

Zs

exp

{

−
∑

C∈Cs

VC(x)

}

,

(1)
where Zs is a constant and VC is a potential func-
tion defined on the clique C. The summation is
over all cliques in the local clique set Cs. The vari-
able x is the set of values {xs, s ∈ S}.

The Hammersley and Clifford theorem implic-
itly requires the neighbourhood system to adhere
to the criterion that s ∈ Gr ⇔ r ∈ Gs. This im-
plies that neighbourhoods must be symmetrical if
the MRF is homogeneous. Three different neigh-
bourhoods are shown in Figs. 1(a)–(c) which are
defined by,

Gd

s
= {r ∈ S : 0 < |s− r|2 ≤ d} ∀ r, s ∈ S, (2)
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Fig. 1. Neighbourhoods and cliques: (a) The nearest-
neighbour neighbourhood; (b) second-order neighbourhood;
(c) fourth-order neighbourhood; (d) local clique set for
nearest-neighbour neighbourhood; (e) clique types for nearest-
neighbour neighbourhood; (f) additional clique types for
second-order neighbourhood.

as given by [3] where d specifies the order of the
neighbourhood.

Given a neighbourhood system G, a clique is
a set C ⊆ S such that s, r ∈ C, s 6= r, implies
s ∈ Gr. That is, every pair of distinct sites in
a clique are neighbours. The single site subset is
also a clique. The local clique set for the site s is
defined as Cs = {C ⊆ S : s ∈ C}.

The local clique set for the first-order neighbour-
hood G1

s
, Fig. 1(a), is shown in Fig. 1(d). This lo-

cal clique set has three different clique types which
are shown in Fig. 1(e). The local clique set for the
second-order neighbourhood, Fig. 1(b), contains
the clique types shown in Figs. 1(e) and (f).

III. Extraction of the Local Clique Set

The proposed method for extracting the local
clique set from a MRF neighbourhood system is
based on graphing a tree structure. The root of
the tree represents a single site. The branches at
the first level represent all the pairwise connec-
tions to the sites in the neighbourhood. Further
branches at the higher levels represent high order
connections that form more complex cliques.

Given a set of sites S, let n(r) denote the node

number of the site r ∈ S with respect to the neigh-
bourhood Gs where r ∈ Gs s ∈ S. Figs. 1(a)–(c)
show the node numbers for neighbourhoods G1

s
,

G2
s

and G4
s

respectively. The node numbers used
in clique trees refer directly to the sites in the re-
spective neighbourhoods.

A. Method 1: Growing the Clique Tree

Follow the steps outlined in Fig. 2 as to how to
graph the clique tree.

Method 1Graphing the Clique Tree
Input:

S ={s,r,t,. . . }← set of sites on a lattice
Gs ← neighbourhood for site s ∈ S

n(r)← node numbers for sites r ∈ Gs

begin

1. Place the node n(s) = 0 s ∈ S at level 1.
This is the root node of the tree.

2. Place the nodes n(r) r ∈ Gs at level 2.
3. Link the root node n(s) = 0 with an arrow

to each node n(r) r ∈ Gs at level 2.
4. Let m = 1.
5. While nodes exist at level m + 1 do

5.1 Increment m

5.2 For each n(r) at level m do

5.2.1 Let n(s) be the node at level
m− 1 that directly links to the
node n(r) at level m.

5.2.2 Place the nodes n(t) t ∈ S at
level m + 1 which adhere to the
following criteria:
• An arrow directly links the

node n(s) at level m−1 with
the node n(t) at level m

• t ∈ Gr

• n(t) > n(r)
5.2.3 Link the node n(r) at level m

with an arrow to each node n(t)
recently placed at level m + 1.

end

Fig. 2. Method 1: Graphing the Clique Tree

B. Method 2: Reading Cliques from the Tree
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Fig. 3. Clique tree for the neighbourhood shown in Fig. 1(b).
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Fig. 4. Clique tree for the neighbourhood shown in Fig. 1(c).

A clique in the tree is represented as any tree
transversal following the arrows from one level to
the next beginning at the root node (level 1). The
single site clique is represented as the single node
n(s) = 0 at level 1. The pairwise cliques are rep-
resented as the node n(s) = 0 plus any other node
n(r) at level 2. In Fig. 3 an example of a three
site clique is represented by the nodes {0, 2, 4}.

The complete set of cliques that can possibly be
read from the clique tree in Fig. 3 is the local clique
set for the neighbourhood shown in Fig. 1(b). The
clique tree of Fig. 4 represents the local clique set
for the neighbourhood shown in Fig. 1(c).

IV. Clique Tree Theorems

The following theorems prove that the local
clique set of a neighbourhood is completely rep-
resented by its respective clique tree.

Theorem 1: A set of nodes derived from Meth-
ods 1 and 2 is a clique
Proof. By the construction of the clique tree, ev-
ery node on the tree is contained within the neigh-
bourhood of all other nodes on the tree that can
transverse to it by following the arrows.

Theorem 2: Each clique represented by the
clique tree is unique
Proof. In growing the clique tree via Method 1,
a node n(s) at level m only links to nodes n(r) at
level m + 1 for which n(r) > n(s). This means
that the nodes {n(s) = 0, n(r), n(t), . . .}, which
can be read from the clique tree via Method 2, are
monotonic increasing in node number. Since the
nodes are ordered, no permutations of the same
set of nodes can be read from the clique tree via
Method 2. Therefore each different clique read via

Method 2 is unique.
Theorem 3: Every local clique is included in the

tree
Proof. Consider any local clique {r, . . . , s} for
the site s ∈ S. The clique can be rearrange into
a set of monotonic increasing node numbers given
by the neighbourhood Gs such that,

{t, s . . . , r} ⇒ {n(s) = 0, n(r), . . . , n(t)}. (3)

The set of nodes {n(s), n(r), . . . , n(t)} cannot rep-
resent a local clique without the first node n(s) =
0. The next node n(r) must be contained in the
neighbourhood Gs and is therefore represented at
level 2 on the clique tree. Continuing along the
list, the next node must be a neighbour to each of
the previous nodes. Because of the criteria stated
at step 5.2.2 in Method 1, this node exists on the
clique tree at level 3 and is linked by an arrow
from the node n(r) at level 2. By considering each
node from a local clique in a monotonic increas-
ing order, it is clear that by the structure of the
clique tree, the local clique must be included in
the clique tree.

Theorem 4: For each clique type with n nodes,
∃ n local cliques
Proof. A local clique of the neighbourhood Gs is
a clique that contains the site s. For a particular
clique type with n nodes any one of the nodes
may represent the site s. Therefore, there exists n

unique local cliques of that type.

V. Discussion and conclusion

The clique tree method extracts all the local
cliques from any MRF neighbourhood system.
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The clique tree method only extracts cliques from
MRF neighbourhood systems because the clique
tree is formed on the premise that s ∈ Gr ⇔ r ∈
Gs. For a MRF neighbourhood system defined on
a homogeneous field, each neighbourhood has to
be identical and symmetrical in shape.

The clique tree has been structured so that the
local cliques of a particular size reside at the one
level. Level 1 holds the single site clique {s}. The
next level, level 2, holds all the pairwise cliques.
This ordering of the cliques continues up the lev-
els of the tree until all the local cliques have been
accounted for. The tree structure makes it very
easy to identify how many local cliques of a cer-
tain size exist, it is just the number of sites at
the corresponding level of the tree. Therefore, the
neighbourhood system of Fig. 1(b) has 1 single site
clique, 8 pairwise cliques, 12 third order cliques,
and 4 fourth order cliques. This is shown in Fig. 3.
The total number of cliques in the local clique set
is, of course, the total number of sites shown on
the tree.
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