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Abstract

This paper looks at the nonparametric, multiscale, Markov
Random Field (MRF) model and its application in
classifying the MeasTex Test Suite. The MeasTex Test
Suite is a standard by which various texture classification
algorithms can be compared. Typically, todays texture
classification algorithms have been based on supervised
classification, whereby all the classification classes have
been predefined. We look at a new texture classification
scheme, one that does not require a complete set of
predefined classes. Instead our texture classification
scheme is based on a significance test. A texture is
classified on the basis of whether or not its statistical
properties can be deemed to be from the same population
of statistics as that define a training set texture. If not,
texture is deemed unknown. The advantages and
disadvantages of such a scheme are discussed in this paper.
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Texture in

(a) Baboon (b) Einstein

Figure 1: Texture in images can represent different types of hair,

skin, or the jumper someone is wearing.

Aim To find a model that is capable of capturing a
large portion of the unique characteristics of a texture

for “open-ended” classification.

Method Use a nonparametric multiscale Markov random
field texture model.

Advantages
e Imposes few underlying constraints on the texture.
e Only requires a small amount of sample data.

e Can easily model high dimensional statistics.




Markov Random Field Model

For a texture to be modelled as a MRF, the value of each
pixel in the texture must be dependent on a local set of
neighbouring pixels. This dependence is then modelled by
a Local Conditional Probability Density Function

(LCPDF) which defines the probability of a pixel being a
certain value given the values of its neighbouring pixels.
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Figure 2: Neighbourhoods. (a) The first order or ‘“nearest-
neighbour” neighbourhood; (b) second order neighbourhood; (c)
eighth order neighbourhood.

Problem 1 Determining the correct neighbourhood size.

Problem 2 Estimation of the LCPDF [3, 7].
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Nonparametric MRF

Estimation of nonparametric LCPDF.
Step 1 Choose a neighbourhood size.

Step 2 Build a multi-dimensional histogram with the
neighbourhood from the texture. Example:

F(Lo L2)

_ummc«m 3: Neighbourhood and its 2-D histogram.

Step 3 Smooth multi-dimensional histogram via

nonparametric Parzen density estimation [8].
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Figure 4: Histogram point is convolved with Gaussian kernel.
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Strong Nonparametric MRF

In [5] we showed that we can estimate the LCPDF as a
function of its marginal distributions by assuming that
there is conditional independence between
non-neighbouring sites for any subset of the image lattice.

Step 1 Choose a neighbourhood N ;.
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Figure 5: Neighbourhoods and their cliques.

Step 2 Choose a set of major cliques {C' C N}, cliques
that are not subsets of other cliques.

Step 3 For each major clique, estimate the marginal
distribution LCPDF.

Step 4 The simple estimate of the strong LCPDF is,
LCPDF ~ 11 LCPDF¢.

/ ccN,,cgc'cN, \
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Multiscale Texture Model
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Figure 6: Grid organisation for multiscale modelling of a MRF.

The multiscale synthesis algorithm starts from the top and
works its way down performing the following at each

resolution [6]:

e Estimation of the LCPDF from original texture at

same resolution.

e Applies stochastic relaxation (SR) (i.e., ICM or Gibbs
sampler) [1].

e While constraining the SR with respect to the above
image [2]. We implemented constrained SR through
the use of our own novel pixel temperature function [6]
which can be regarded as an implementation of local

annealing in the relaxation process.
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Open-ended Texture Classification

To perform open-ended texture classification for a texture
from the MeasTex Test Suite [9], we first built an LCPDF
from the training texture. This LCPDF was then used to
collect probabilities from the unknown texture and the
training texture. The classification was made by using a
significance test on whether the two sets of probabilities
were from the same population. We used the
nonparametric Kruskal-Wallis test [4] to test this null
hypothesis. This classification process was deemed possible
when the LCPDF involved in collecting the probabilities
was able to reproduce synthetic textures similar to the
training texture. This ensured that the statistics, or
features, involved in the classification were unique to the
texture class. Any texture with similar unique statistical
characteristics would be of the same class.

Although we were able to make a yes/no classification
directly from the Kruskal-Wallis hypothesis test, the
MeasTex Test Suite [9] required a probability associated
with the classification. As the Kruskal-Wallis hypothesis
test returned a value that was chi-squared-distributed with
one degree of freedom, the probability we returned was the
probability of recording a larger chi-squared-distributed

//\m__:m [5]. \




Probability scale

Fig. 1(c)
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Table 1: MeasTex test suite summary scores

Test Suites

Model Grass Material OhanDube VisTex All Rank
MRF-n1t0 732157 .767600 .680725 .680725 .723510 11
MRF-n1tl .743578 .785322 .674175 731708 733695 8
MRF-n1t2 764700 .784077 .677600 747062 .743359 3
MRF-n1t3 766828 .788995 .653425 748470 739429 4
MRF-n3c2t0 .638350 .687390 .604525 .650675 .645235 21
MRF-n3c2t1 .629728 .680813 .600075 674262 .646219 19
MRF-n3c2t2 .621550 .678654 .589850 .692154 .645552 20
MRF-n3c2t3 .598307 .673072 .589975 .696625 .639494 22
MRF-n3c3t0 720214 776863 .691475 .709325 724469 10
MRF-n3c3tl 729285 .781795 .694400 .730533 .734003 7
MRF-n3c3t2 747414 .789036 .690425 749175 744012 2
MRF-n3c3t3 754221 .792018 .697400 748270 T47977 1
MRF-n3t0 .733535 .761781 .668525 .705537 717344 12
MRF-n3t1 746742 .782454 .665350 722929 .729368 9
MRF-n3t2 766721 .788022 .650625 742450 736954 5
MRF-n3t3 .763900 .795795 .640075 .745591 .736340 6
MRF-n5c2t0 .659707 .681550 .601325 .668487 .652767 17
MRF-n5c2tl .653392 .678340 597475 .687891 .654274 16
MRF-n5c2t2 .643614 677272 .586175 .689083 .649036 18
MRF-n5t0 .686642 .726740 .670875 677470 .690431 14
MRF-n5t1 .678828 .737050 .649075 .699741 .691173 13
MRF-n5t2 .689757 .748400 .621250 .700987 .690098 15

MRF model key: n: is the neighbourhood index, referring
to the max distance from the centre pixel. c: indexes
the maximum statistical order (clique size) used in the
strong MRF model. t: is the multigrid height index.
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Comparative Assessment

Table 2: MeasTex test suite summary scores

Test Suites
Model Grass Material OhanDube VisTex All Rank
Fractal 906778 .908636 .904875 .813645 .883483 8
Gaborl .889978 967772 .978875 .906591 .935804 3
Gabor2 .880185 .955313 .985975 .898791 .930066 5
GLCM1 .891328 .944863 .883100 .820283 .884893 7
GLCM2 916157 .964986 .866675 .852266 .900021 6
GMRF-std1s 917492 .966918 .972000 .885616 .935506 4
GMRF-std2s 917971 .977545 1991125 .932058 954674 2
GMRF-std4s .948892 .969340 .988175 .932437 959711 1

known.

\_

than the best nonparametric MRF model (and is

our method of open-ended texture classification is

computationally more efficient). What this shows is that

outperformed by the standard supervised classification
techniques when the all the required texture classes are

The results in Table 1 for the nonparametric MRF models
can be directly compared to the results in Table 2 for the
fractal, Gabor, GLCM, and Gaussian MRF models. The
structure of these models are given in [9]. Even the worst
performing standard model (the Fractal model) does better

\
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Analysis of Performance

Table 3: Average rank for various neighbourhoods

Neighbourhood Size Except clique models All models

nearest 4 6.50 6.50
3 X 3 8.00 11.17
5 X5 14.00 15.50

Table 4: Average rank for various clique sizes

Clique Size N3 models All models

2 20.50 19.00
3 5.00 5.00
- 8.00 9.09

Table 5: Average rank for various multigrid heights

Multigrid Height Except clique models All models
1 12.33 14.17
2 10.00 12.00
3 7.67 10.50
4 5.00 8.25

These tables (which show the general effect of varying one
of the MRF model's specifications) give an expected
optimal MRF model as the one identified in Table 1. We
can therefore surmise that these variables are relatively

msam_um:n_m:ﬁ..;mo_uﬂBmmmﬂo:_\mm:_.ﬁmmm_mo?:_v\mm:m«m__
/Pm no functional framework was imposed on the model. \
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Practical Application

(c.1) (c.2) (c.3)
OB

Probability scale 1

Figure 8: Probability maps of medical images: (a) lymphoid follicle
in the cervix; (b) small myoma; (c) focus of stromal differentiation in

the myometrium.
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Practical Application

Figure 9: Airborne SAR image of Cultana.

Probability scale OIS 1

_umm:wm 10: Probability maps of the trees and grass superimposed on
to Cultana image.

\_ /
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Summary and Conclusion

We were able to use our nonparametric MRF model to
synthesise realistic realisations of a training texture. It was
with this evidence that we concluded that the
nonparametric MRF model captured all the unique
characteristics specific to a particular texture. With such a
model it became feasible to recognise other similar textures
from an image containing multiple unknown textures. The
model was used to determine the probability that an
unknown texture was similar to a training texture with
respect to its unique statistical characteristics, thereby
performing open-ended texture classification. This
technique is considered potentially valuable in the practical
application of terrain mapping of SAR images.

\_
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