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Abstract

This paper looks at the nonparametric, multiscale,
Markov Random Field (MRF) model and its application in
classifying the MeasTex Test Suite. The MeasTex Test Suite
is a standard by which various texture classification algo-
rithms can be compared. Typically, todays texture classifi-
cation algorithms have been based on supervised classifi-
cation, whereby all the classification classes have been pre-
defined. We look at a new texture classification scheme, one
that does not require a complete set of predefined classes.
Instead our texture classification scheme is based on a sig-
nificance test. A texture is classified on the basis of whether
or not its statistical properties can be deemed to be from
the same population of statistics as that define a training
set texture. If not, texture is deemed unknown. The advan-
tages and disadvantages of such a scheme are discussed in
this paper.

1. Introduction

Texture classification has generally been accomplished
via a supervised method. This entails defining a set of
predetermined classes into which a texture may be classi-
fied [1]. Under such an arrangement, each unknown texture
to be classified must fall within one of these predetermined
classes. The problem comes when there is no guarantee that
all the required texture classes have been predefined. Con-
sider for example, images of Earth’s terrain. Texture clas-
sification of Earth’s terrain from Synthetic Aperture Radar
images has many logistical advantages [2]. However from
a implementation point of view, it is hard to predefine the
types of textured terrains that a Synthetic Aperture Radar
images is liable to visualise. Therefore the standard texture
classification algorithm predominantly fail at this task.

We present a new approach to this extreme multi-
class problem. Using our nonparametric multiscale MRF
model [7], we were able to synthesise multiple natural

textures with high fidelity. Examples of the reproduction
qualities are given in Fig. 1. From this experiment, and
many more, we ascertained that the nonparametric multi-
scale MRF model captured a large portion of the unique
characteristics of a texture. The proposed classification al-
gorithm uses this identity to classify a texture on the basis
that it has the same unique characteristics as a training class
texture. Two textures are deemed to be from the same class,
if they can be shown to have similar unique characteristics
as defined by the nonparametric multiscale MRF model.

This new type of classification method we have termed
“open-ended classification.” The classification inference is
made on the basis that similar unique statistical characteris-
tics defines whether an unknown texture is of the same class
as a predefined texture. Either the unknown texture belongs
to this class or it does not. In this way, when a texture is
being classified, not all the texture classes need to be prede-
fined. In fact the classification algorithm is open to textures
that do not fit any predefined class. These textures are just
left as “unknown”. This is a much better scenario than la-
belling an unknown texture as being of a certain class when
it is not. To determine the effectiveness of this new ap-
proach, we employed the use of the MeasTex Test Suite [9].

2. Nonparametric MRF model

The nonparametric MRF model is based on estimating
the local conditional probability density function (LCPDF)
from a multi-dimensional histogram of a neighbourhood
over a homogeneous textured image [7]. When the sample
data is sparsely dispersed over the multi-dimensional his-
togram domain (as in our case), nonparametric estimates
of the LCPDF tend to be more reliable than their paramet-
ric counterparts if the underlying true distribution is un-
known [8].

In [6] we showed that we can estimate the LCPDF
as a function of its marginal distributions by assum-
ing that there is conditional independence between non-
neighbouring sites for any subset of the image lattice. This



is a much stronger assumption than made for a normal
MRF which defines a site as being conditionally indepen-
dent upon its non-neighbouring sites given all of the neigh-
bouring sites. This strong MRF model is equivalent to the
Analysis-of-variance (ANOVA) construction [3], which al-
lows us to use the theorems from the ANOVA construction
to estimate the LCPDF for the strong MRF model.

The ability to use a strong MRF model allowed us to not
only to vary the neighbourhood size, but also the statistical
order of the model. In the classification analysis, we were
able to test the what order of statistics gave the best classi-
fication. Since we used a nonparametric model, this made
the test independent of functional form.

3. Multiscale texture synthesis

To synthesise a texture we used our multiscale relaxation
(MR) algorithm as formalised in [7]. The basis of the algo-
rithm was to perform stochastic relaxation (SR) at the coars-
est resolution, and then successively at each finer resolution
perform constrained SR with respect to the result from the
previous resolution [4]. We implemented constrained SR
through the use of our own novel pixel temperature func-
tion [7] which can be regarded as an implementation of lo-
cal annealing in the relaxation process.

We used training textured images of size ������������� pixels
to estimate the LCPDF from which images of size �	��
����
��

were synthesised. A subjective comparison of the training
and resulting synthetic textures, Fig. 1, shows that the non-
parametric multiscale MRF model is a highly representative
model for natural textures. This confirms that the unique
characteristics of the training textures have indeed been cap-
tured by our model.

4. Open-ended texture classification

To perform open-ended texture classification for a tex-
ture from the MeasTex Test Suite [9], we first built an
LCPDF from the training texture. This LCPDF was then
used to collect probabilities from the unknown texture and
the training texture. The classification was made by us-
ing a significance test on whether the two sets of probabili-
ties were from the same population. We used the nonpara-
metric Kruskal-Wallis test [5] to test this null hypothesis.
This classification process was deemed possible when the
LCPDF involved in collecting the probabilities was able to
reproduce synthetic textures similar to the training texture.
This ensured that the statistics, or features, involved in the
classification were unique to the texture class. Any texture
with similar unique statistical characteristics would be of
the same class.

Although we were able to make a yes/no classification
directly from the Kruskal-Wallis hypothesis test, the Meas-

Tex Test Suite [9] required a probability associated with
the classification. As the Kruskal-Wallis hypothesis test re-
turned a value that was chi-squared-distributed with one de-
gree of freedom, the probability we returned was the proba-
bility of recording a larger chi-squared-distributed value [6].

4.1 Comparative assessment of performance

In Table 1, a list of summary scores for a suite of non-
parametric MRF models are presented. The key to the MRF
model names is: n1 refers to a nearest neighbour neighbour-
hood, n3 refers to a ����� neighbourhood, n5 refers to a �����
neighbourhood. The number after the letter ‘c’ refers to the
maximum statistical order used in the strong MRF model.
The height of the multigrid used by the model is indicated
by the number after the letter ‘t’. From first perusal of Ta-
ble 1, it is evident (by looking at the relative ranks) that the
nonparametric MRF model, based on a ����� neighbourhood
using just 3rd order statistics and a four tier multigrid, gives
the best performance with about 75% accuracy.

The results in Table 1 for the nonparametric MRF mod-
els can be directly compared to the results in Table 2 for
the fractal, Gabor, GLCM, and Gaussian MRF models. The
structure of these models are given in [9]. Even the worst
performing standard model (the Fractal model) does better
than the best nonparametric MRF model (and is computa-
tionally more efficient). What this shows is that our method
of open-ended texture classification is outperformed by the
standard supervised classification techniques when the all
the required texture classes are known.

If we look at the relative rankings of the different mod-
els presented in Table 1, we can get an overall impression
of the effect of varying any one of the nonparametric MRF
model’s specifications. Table 3 demonstrates the general
effect of increasing the neighbourhood size. As the aver-
age rank increases with neighbourhood size, we can sur-
mise that a small neighbourhood is better for classification.
In Table 4 it is the statistical order that is varied. From this
table we can see that although it is advisable to keep the
statistical order small, if the the statistical order gets too
small the model will start to be undertrained. Lastly, in Ta-
ble 5 we see that increasing the multigrid height improves
the classification accuracy. Just from these three tables we
can conclude that the optimal nonparametric MRF model
would be MRF-n3c3t3. Now since the expected optimal
nonparametric MRF model is the same one as identified in
Table 1, we can also conclude that there is not too much
interplay between these three model construction variables.
These variables can be used almost independently to opti-
mise the nonparametric MRF model. In fact since we have
not imposed a functional framework to this analysis, any
similar texture model could be similarly optimised.
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Figure 1. VisTex textures: (a) Bark.0003; (b) Bark.0009; (c) Fabric.0010; (d) Flowers.0003; (e)
Food.0010; (f) Leaves.0016; (.1) Textures were synthesised from a nonparametric MRF model with a

�
�

�
neighbourhood.

Table 1. MeasTex test suite summary scores

Test Suites
Model Grass Material OhanDube VisTex All Rank

MRF-n1t0 .732157 .767600 .680725 .680725 .723510 11
MRF-n1t1 .743578 .785322 .674175 .731708 .733695 8
MRF-n1t2 .764700 .784077 .677600 .747062 .743359 3
MRF-n1t3 .766828 .788995 .653425 .748470 .739429 4

MRF-n3c2t0 .638350 .687390 .604525 .650675 .645235 21
MRF-n3c2t1 .629728 .680813 .600075 .674262 .646219 19
MRF-n3c2t2 .621550 .678654 .589850 .692154 .645552 20
MRF-n3c2t3 .598307 .673072 .589975 .696625 .639494 22
MRF-n3c3t0 .720214 .776863 .691475 .709325 .724469 10
MRF-n3c3t1 .729285 .781795 .694400 .730533 .734003 7
MRF-n3c3t2 .747414 .789036 .690425 .749175 .744012 2
MRF-n3c3t3 .754221 .792018 .697400 .748270 .747977 1
MRF-n3t0 .733535 .761781 .668525 .705537 .717344 12
MRF-n3t1 .746742 .782454 .665350 .722929 .729368 9
MRF-n3t2 .766721 .788022 .650625 .742450 .736954 5
MRF-n3t3 .763900 .795795 .640075 .745591 .736340 6

MRF-n5c2t0 .659707 .681550 .601325 .668487 .652767 17
MRF-n5c2t1 .653392 .678340 .597475 .687891 .654274 16
MRF-n5c2t2 .643614 .677272 .586175 .689083 .649036 18
MRF-n5t0 .686642 .726740 .670875 .677470 .690431 14
MRF-n5t1 .678828 .737050 .649075 .699741 .691173 13
MRF-n5t2 .689757 .748400 .621250 .700987 .690098 15



Table 2. MeasTex test suite summary scores

Test Suites
Model Grass Material OhanDube VisTex All Rank

Fractal .906778 .908636 .904875 .813645 .883483 8
Gabor1 .889978 .967772 .978875 .906591 .935804 3
Gabor2 .880185 .955313 .985975 .898791 .930066 5
GLCM1 .891328 .944863 .883100 .820283 .884893 7
GLCM2 .916157 .964986 .866675 .852266 .900021 6
GMRF-std1s .917492 .966918 .972000 .885616 .935506 4
GMRF-std2s .917971 .977545 .991125 .932058 .954674 2
GMRF-std4s .948892 .969340 .988175 .932437 .959711 1

Table 3. Average rank for various neighbour-
hoods from Table 1

Neighbourhood Size Except clique models All models

nearest 4 6.50 6.50
� � � 8.00 11.17
� � � 14.00 15.50

Table 4. Average rank for various clique sizes
from Table 1

Clique Size N3 models All models

2 20.50 19.00
3 5.00 5.00
- 8.00 9.09

5. Summary and conclusion

We were able to use our nonparametric MRF model to
synthesise realistic realisations of a training texture. It was
with this evidence that we concluded that the nonparametric
MRF model captured all the unique characteristics specific
to a particular texture. With such a model it became feasible
to recognise other similar textures from an image containing
multiple unknown textures. The model was used to deter-
mine the probability that an unknown texture was similar to
a training texture with respect to its unique statistical char-
acteristics, thereby performing open-ended texture classifi-
cation. This technique was considered potentially valuable
in the practical application of terrain mapping of SAR im-
ages.

Table 5. Average rank for various multigrid
heights from Table 1

Multigrid Height Except clique models All models

1 12.33 14.17
2 10.00 12.00
3 7.67 10.50
4 5.00 8.25
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