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Abstract

In this paper we present noncausal, nonparametric,
multiscale, Markov Random Field (MRF) model for syn-
thesising and recognising texture. The model has the ability
to capture the characteristics of a wide variety of textures,
varying from the structured to the stochastic. For texture
synthesis, we use our own novel multiscale approach, incor-
porating local annealing, allowing us to use large neigh-
bourhood systems to model some complex textures. We
show how we are able to manipulate the statistical order
of our high dimensional model without over compromising
the integrity of the representation. Also by varying the stat-
istical order of our model we are able to optimise it for the
unsupervised recognition of textures with respect to textures
that have not been modelled.

1. Introduction

MRF models have mainly been used for the supervised
classification of texture, for which a library of pre-modelled
textures must exist in order for discriminant analysis to be
used [1]. However, this approach is cumbersome for SAR
images of the Earth’s terrain as they contain a myriad of
different texture types, too many to be able build a library
of pre-modelled textures.

We present a new approach to this problem by using our
multiscale nonparametric MRF model to model just one
source texture from which we produce a probability map
of the source texture over a test image. We show that our
MRF model, assessed by human vision, is able to synthes-
ise highly representative textures [8]. On this basis, we
determine that the model captures enough unique textural
characteristics to be able to define a probability to an image
segment without the use of discriminant analysis. This al-
lows segmentation and texture recognition of images with

undefined texture types, i.e., it permits unsupervised texture
recognition [7].

Although the synthesis test may indicate if a model has
captured the specific characteristics of a texture, it does not
determine whether the model is suitable for segmentation
and classification. Using the philosophy from [10], a tex-
ture model should maximise its entropy while retaining the
unique characteristics of the texture. In terms of the non-
parametric MRF this is equivalent to reducing the statistical
order of the model while retaining the integrity of the syn-
thesised textures.

In this paper, we also present a method for reducing the
statistical order of the nonparametric MRF model to a set of
lower order statistical properties based on the cliques of the
MREF [6]. We have shown in [5] that this reduced model still
contains the unique characteristics required for synthesising
representative texture, but due to the lower order statistics is
able to perform better segmentation and classification [7].
By adjusting the extent of statistical reduction, the model
can be optimised to capture the most unique characterist-
ics while retaining the integrity of the synthesised textures,
thereby producing a model suitable for unsupervised texture
recognition.

2. Nonparametric MRF model

The nonparametric MRF model is based on estimating
the local conditional probability density function (LCPDF)
from a multi-dimensional histogram of a neighbourhood
over a homogeneous textured image [8]. When the sample
data is sparsely dispersed over the multi-dimensional his-
togram domain (as in our case), nonparametric estimates
of the LCPDF tend to be more reliable than their paramet-
ric counterparts if the underlying true distribution is un-
known [9].

In [7] we showed that we may estimate the LCPDF
as a function of its marginal distributions by assum-



ing that there is conditional independence between non-
neighbouring sites for any subset of the image lattice. This
is a much stronger assumption than made for a normal
MRF which defines a site as being conditionally independ-
ent upon its non-neighbouring sites given all of the neigh-
bouring sites. This strong MRF model is equivalent to the
Analysis-of-variance (ANOVA) construction [2, 7], which
allows us to use the theorems from the ANOVA construc-
tion to estimate the LCPDF for the strong MRF model.

3. Multiscaletexture synthesis

To synthesis a texture we used our multiscale relaxa-
tion (MR) algorithm as formalised in [8]. The basis of
the algorithm is to perform stochastic relaxation (SR) at
the coarsest resolution, and then successively at each finer
resolution perform constrained SR with respect to the res-
ult from the previous resolution [3]. We implement con-
strained SR through the use of our own novel pixel temper-
ature function [8] which may be regarded as an implement-
ation of local annealing in the relaxation process.

We used source images of size 128 x 128 pixels to es-
timate the LCPDF from which images of size 256 x 256
were synthesised. A subjective comparison of the source
and resulting synthetic textures, Fig. 1, show that the non-
parametric multiscale Markov random field texture model
is a highly representative model of natural textures. This
confirms that the characteristics of the source texture have
indeed been captured by the model.

4. Multiscale unsupervised texturerecognition

To perform unsupervised texture recognition for a seg-
ment of our test image, we used the set of probabilities
defined by the LCPDF over the segment, and compared
them directly to the set of probabilities from the source tex-
ture [7]. We used the nonparametric Kruskal-Wallis test [4]
to test the null hypothesis that the two sets of probabilities
come from the same population. We then used the confid-
ence associated with accepting the null hypothesis to form
a probability map over the test image.

To prove the performance of our recognition algorithm,
we tested it on images containing a mosaic of sub-images
with similar grey levels (see Fig. 2(a) (b)). A conventional
application of a (first order) histogram technique would
not able to segment these. Also a mix of structured and
stochastic sub images were chosen to illustrate how our
nonparametric technique is able to recognise all types of
textures. The results are probability maps with respect to
one source texture. The model used was the strong MRF
model with a 3 x 3 neighbourhood and pairwise cliques, as
this was identified as our optimal model for unsupervised
texture recognition [7].

5. Summary and conclusion

With the multiscale texture synthesis incorporating our
novel pixel temperature function, we were able to use the
nonparametric MRF model to synthesise realistic realisa-
tions of a source texture with minimal phase discontinuit-
ies. It was with this evidence that we concluded that the
nonparametric MRF model captures all the unique charac-
teristics specific to a particular texture. With such a model it
became feasible to recognise other similar texture from an
image containing multiple unknown textures. The model
was used to determine the probability that an image seg-
ment was similar to a source texture with respect to its tex-
tural characteristics, thereby performing unsupervised tex-
ture recognition that did not require prior knowledge of the
textures types present in the image. This technique was con-
sidered valuable to the practical application of terrain map-
ping of SAR images.
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Figure 1. VisTex textures:
Fo00d.0010; (f) Leaves.0016;

(g) Brick.0000; (h) Fabric.0002; (i) Flowers.0000;

synthesised from a nonparametric MRF model with a 7 x 7 neighbourhood.
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Figure 2. Probability maps of Brodatz texture mosaics (a) and (b) with respect to: (a.1) D3 -

(b.2) D84

Straw; (a.3) D57 - Handmade paper; (b.1) D17 - Herringbone weave;

(a.2) D15 -

skin;
(b.3) D29

Beach sand.



