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ABSTRACT

This paper introduces a new classification scheme called
“open-ended texture classification.” The standard approach
for texture classification is to use a closed n-class classi-
fier based on the Bayesian paradigm. These perform su-
pervised classification, whereby all the texture classes have
to be predefined. We propose a new texture classification
scheme, one that does not require a complete set of prede-
fined classes. Instead our texture classification scheme is
based on a significance test. A texture is classified on the
basis of whether or not its statistical properties are deemed
to be from the same population of statistics as those that
define a specific texture class. This new “open-ended tex-
ture classification” is considered potentially valuable in the
practical application of terrain mapping of Synthetic Aper-
ture Radar (SAR) images.

1. INTRODUCTION

Texture classification has generally been accomplished via
a supervised method based on the Bayesian paradigm [1].
This entails defining a set of predetermined classes into which
a texture can be classified [2]. Under such an arrangement,
each unknown texture to be classified must fall within one
of these predetermined classes. The problem comes when
there is no guarantee that all the required texture classes
have been predefined. Consider for example, images of
Earth’s terrain. Texture classification of Earth’s terrain from
Synthetic Aperture Radar images has many logistical ad-
vantages [3]. However from a implementation point of view,
it is hard to predefine the types of textured terrains that
a Synthetic Aperture Radar images is liable to visualise.
Therefore the standard texture classification algorithm pre-
dominantly fails at this task.

We present a new approach to this extreme multi-class
problem. The proposed classification scheme is based on
the assumption that their exists a texture model which can
capture the unique statistical characteristics of the desired
texture class. Given such a model, a classification can be

made on the basis of whether or not an unknown texture
exhibits significantly similar unique statistical characteris-
tics as compared to the desired texture class. Either the un-
known texture belongs to this class or it does not. In this
way, when a texture is being classified, not all the texture
classes need to be predefined. In fact the classification al-
gorithm is open to textures that do not fit any predefined
class. These textures are just left as “unknown”. This is a
much better scenario than labelling an unknown texture as
a predefined class when it is not.

In [4], we presented a nonparametric multiscale MRF
texture model. From this model we were able to synthesise
multiple natural textures with high fidelity. Examples of the
reproduction qualities are given in Fig. 1. From this experi-
ment, and many more, we ascertained that the nonparamet-
ric multiscale MRF model captured the unique character-
istics of the textures. Therefore we have a model that can
be used for our new type of classification method we have
termed “open-ended texture classification.”

2. NONPARAMETRIC MULTISCALE MRF MODEL

The nonparametric multiscale MRF model is based on es-
timating the local conditional probability density function
(LCPDF) from a multi-dimensional histogram of a neigh-
bourhood over a homogeneous textured image [4]. When
the sample data is sparsely dispersed over the multi-dimensional
histogram domain (as in our case), nonparametric estimates
of the LCPDF tend to be more reliable than their paramet-
ric counterparts if the underlying true distribution is un-
known [5].

3. MULTISCALE TEXTURE SYNTHESIS

To synthesis a texture we used our multiscale relaxation
(MR) algorithm as formalised in [4]. The basis of the algo-
rithm is to perform stochastic relaxation (SR) at the coars-
est resolution, and then successively at each finer resolution
to perform constrained SR with respect to the result from
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Fig. 1. VisTex textures: (a) Bark.0003; (b) Fabric.0008; (c) Food.0011; (d) Flowers.0006; (e) Food.0010; (f) Leaves.0016;
(.1) Textures were synthesised from a nonparametric multiscale MRF model with a ����� neighbourhood.

the previous resolution [6]. In our implementation, we per-
formed constrained SR via our own novel pixel temperature
function [4], which can be regarded as an implementation
of local annealing in the relaxation process.

From training textured images of size �����	�
����� pix-
els we estimated the LCPDF and then synthesised images
of size ����	������ . A subjective comparison of the train-
ing and resulting synthetic textures, Fig. 1, shows that the
nonparametric multiscale MRF model is a highly represen-
tative model for natural textures. The larger synthesised im-
ages confirm that the unique characteristics of the training
textures have indeed been captured by our model.

4. OPEN-ENDED TEXTURE CLASSIFICATION

To perform open-ended texture classification we first built
an LCPDF from the training texture. This LCPDF was then
used to collect probabilities from an unknown texture and a
training texture. The classification was made by performing
a significance test on whether the two sets of probabilities
were from the same population. We used the nonparametric
Kruskal-Wallis test [7] to test this null hypothesis. A signif-
icance test for the classification process was deemed possi-
ble when the LCPDF involved in collecting the probabilities
was able to reproduce similar synthetic textures to the train-
ing texture. This ensured that the statistics, or features, in-
volved in the classification were unique to the texture class.
A texture with significantly similar unique statistical char-
acteristics would then be deemed to be of the same class.

In Table 1, we show the percentage error for open-ended
texture classification of 100 VisTex texture mosaics [8].

Although it is possible to make a yes/no classification
directly from the Kruskal-Wallis hypothesis test [7], it is
also possible to attain a goodness-of-fit measure. As the
Kruskal-Wallis hypothesis test returns a value that is chi-
squared-distributed with one degree of freedom, the goodness-
of-fit is given by the probability of recording a larger chi-
squared-distributed value [9]. Fig. 2 shows various proba-
bility maps for a texture mosaic and a training texture.

5. PRACTICAL APPLICATION

The practical application of terrain mapping a SAR image
of Cultana, Fig. 3, shows the two results if: 1) the train-
ing class was a patch of trees from the bottom left corner,
Fig. 3(b); or 2) the training class was a patch of grass from
the bottom right corner, Fig. 3(c). In both cases the resulting
probability maps have been superimposed on to the original
SAR image. This gives a clear indication of how the open-
ended texture classification has performed.

6. SUMMARY AND CONCLUSION

We were able to use our nonparametric MRF model to syn-
thesise realistic realisations of a training texture. It was with
this evidence that we concluded that the nonparametric mul-
tiscale MRF model captured all the unique characteristics
specific to a particular texture. With such a model it became
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Fig. 2. Probability maps of Brodatz texture mosaics (a) and (b) with respect to: (a.1) D3 - Reptile skin; (a.2) D15 - Straw;
(a.3) D57 - Handmade paper; (b.1) D17 - Herringbone weave; (b.2) D84 - Raffia; and (b.3) D29 - Beach sand.

(a) (b) (c)

Fig. 3. Airborne SAR image of Cultana [11] with the probability maps of the trees and grass superimposed.

feasible to recognise other similar textures from an image
containing multiple unknown textures. The model was used

to determine the probability that an unknown texture was
similar to a training texture with respect to its unique statis-



Table 1. Percentage error for open-ended texture classification of 100 VisTex texture mosaics = percentage area of false
negatives + percentage area of false positives. VisTex Texture mosaics courtesy of Computer Vision Group at the University
Bonn [8], and Vision Texture Archive of the MIT Media Lab [10]

Neighbourhood Size Clique Size Multigrid Height Percentage Error Rank
�����

2 0 15.67 6
�����

2 1 12.94 1
�����

2 2 13.85 3
�����

2 3 18.33 8
�����

3 0 23.70 18
�����

3 1 18.58 10
�����

3 2 17.62 7
�����

3 3 21.80 17
�����

- 0 24.04 20
�����

- 1 19.45 12
�����

- 2 18.40 9
�����

- 3 21.79 16
�����

2 0 14.69 4
�����

2 1 13.48 2
�����

2 2 15.22 5
�����

2 3 21.55 15
�����

3 0 21.45 14
�����

3 1 18.74 11
�����

3 2 19.46 13
�����

3 3 25.48 22
�����

- 0 25.54 23
�����

- 1 24.38 21
�����

- 2 23.98 19
�����

- 3 30.33 24

tical characteristics, thereby performing open-ended texture
classification. This technique is considered potentially valu-
able in the practical application of terrain mapping of SAR
images.
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