

The University of Queensland, QLD 4072 Centre for Sensor Signal & Information Processing Electrical & Computer Engineering

USING A NONPARAMETRIC TEXTURE CLASSIFICATION MARKOV RANDOM FIELD

Authors: R. Paget, I. D. Longstaff, and B. Lovell

Engineering, University of Queensland, QLD 4072 AUSTRALIA. authors are with the Department of Electrical and Computer

 $\hbox{E-mail: } \{ \mathsf{paget,idl,lovell} \} @ \mathsf{elec.uq.edu.au}$

This work was supported by the Cooperative Research Centre for

Sensor, Signal, and Information Processing

Texture in Images

Baboon face

Airborne SAR

physical interpretation. image which identifies that area as having a particular Is the visual characteristics within an area of

segmentation and classification the unique characteristics of a texture for To find a model that is capable of capturing

Method field texture model Use a nonparametric multiscale Markov random

Advantages

- Does not require parameter estimation.
- Only requires a small amount of sample data.
- Can model high dimensional statistics.

Markov Random Field Model

certain value given the values of its neighbouring pixels. neighbouring pixels. This dependence is then modelled by pixel in the texture must be dependent on a local set of For a texture to be modelled as a MRF, the value of each **(LCPDF)** which defines the probability of a pixel being Local Conditional Probability Density Function ىھ

Figure neighbour" eighth order neighbourhood. neighbourhood; Neighbourhoods. (b) second (a) The order first neighbourhood; order Q \bigcirc

Problem \vdash Determining the correct neighbourhood size.

Problem N Estimation of the LCPDF

Nonparametric MRF

Estimation of nonparametric LCPDF.

Step Choose a neighbourhood size

neighbourhood from the texture. Example: **N** Build a multi-dimensional histogram with

Figure 2: Neighbourhood and its 2-D histogram.

Step nonparametric Parzen density estimation. ယ Smooth multi-dimensional histogram via

Figure 3: Histogram point is convolved with Gaussian kernel.

Multiscale Texture Synthesis

synthetic and the original textures textures so as to compare the visual similarity between the unique characteristics: use the model to synthesise To test whether a texture model has captured all the

Figure 4: Grid organisation for multiscale modelling of a MRF.

works its way down performing the following at each resolution The multiscale synthesis algorithm starts from the top and

- same resolution Estimation of the LCPDF from original texture at
- sampler). Applies stochastic relaxation (SR) (i.e., ICM or Gibbs
- ımage. While constraining the SR with respect to the above

Pixel Temperature

implementing local annealing The pixel temperature helps constrain the SR process while

Figure 5: The sites "ullet" are from the above level.

Step 1 Initialise pixel temperature t_s ,

$$t_s = \left\{ egin{array}{ll} 1 & \mbox{if site} s = \circ & \Rightarrow & \mbox{low confidence} \\ 0 & \mbox{if site} s = ullet & \Rightarrow & \mbox{high confidence} \end{array} \right.$$

- Step 2 Modify the estimate of the LCPDF to be more confidence). dependent on pixels with low temperature (i.e., high
- Step 3 temperature (*i.e.*, increase confidence). After a pixel has been relaxed ⇒ decrease pixel

Synthetic Textures

hood. small neighbourhood; (?.2) textures synthesised with large neighbour- $\mathsf{D15}$ - straw; (c) $\mathsf{D103}$ - loose burlap; (?.1) textures synthesised with Figure 6: Brodatz textures: (a) D20 - magnified French canvas; (b)

Classification

Probability Measurement

- Get an **unbiased** set of local probabilities from sample texture y: {LPDF_s}
- 2 Get a set of local probabilities from a segment window in image x: {LPDF_r}
- Make comparison between the two sets via the Wilcoxon test

Edges

Figure 7: Move the window position for an edge pixel

Boundaries

Figure 8: Move the window position for a boundary pixel

Segmented and Classified **Textures**

<u>6</u>

(a)

Fig. 1(a)

Fig. 2(a)

(b)

Fig. 1(b)

Fig. 2(b)

Fig. 1(c)

Fig. 2(c)

Probability scale

(c)

0

Practical Application

follicle in the cervix; (b) small myoma; (c) focus of stromal differentiation in the myometrium. Figure 9: Probability maps of medical images: (a) lymphoid