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Texture Classification Using Nonparametric Markov

Random Fields

R. Paget, I. D. Longstaff, and B. Lovell

Abstract— We present a nonparametric Markov

Random Field model for classifying texture in im-

ages. This model can capture the characteristics of

a wide variety of textures, varying from the highly

structured to the stochastic. The power of our

modelling technique is evident in that only a small

training image is required, even when the train-

ing texture contains long range characteristics. We

show how this model can be used for unsupervised

segmentation and classification of images contain-

ing textures for which we have no prior knowledge

of the constituent texture types. This technique

can therefore be used to find a specific texture in a

background of unknown textures.

I. Introduction

The process of classifying textures in an image
usually requires prior knowledge of all textures
that may occur [1]. Where this is known, texture
models need capture only sufficient characteristics
to discriminate between the set of known textures,
and then discriminant analysis for instance may
be used [2]. However, for images where not all
textural types are known, a texture model needs
to capture all relevant features that characterise
a particular texture. Then to segment and clas-
sify an image, the model of a known texture can
be statistically compared with regions in the im-
age to determine the probability that the region
matches the known texture. This sort of mod-
elling is also required when discriminant analysis
can not be used because background textures in
an image are non-uniform.

As yet, texture recognition is not a fully un-
derstood problem and the characteristics needed
to differentiate textures have not been fully delin-
eated. Therefore, deriving a model to capture all
relevant characteristics that differentiate a partic-
ular texture from any other remains an open prob-
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lem [3].

A reasonable way to test whether a texture
model has captured all relevant characteristics is
to synthesise a texture from the model and evalu-
ate how similar it is to the original. How to eval-
uate similarity is an open-ended problem; it re-
quires us to set the criteria for similarity. (Clearly
white noise with odd parity would be statistically
different from white noise with even parity.) One
benchmark test of similarity is a subjective com-
parison, by eye, of the synthesised texture with
the training texture. We assume that if the tex-
ture synthesised from the model is indistinguish-
able by eye from the training texture then the
model is adequate for most applications. Current
models such as auto-models, autoregressive (AR)
models, moving average (MA) models and autore-
gressive moving average (ARMA) models have not
been shown to realistically synthesise natural tex-
tures [4] such as those in the Brodatz album [5].
However, we [6], [7] have recently used a nonpara-
metric Markov Random Field (MRF) model to
successfully synthesise realistic representations of
structured and stochastic textures with minimal
phase discontinuities.

In this paper, we present a new approach: us-
ing the nonparametric MRF model to model just
one texture and then using that model to map
the probability of each pixel in an image being of
the given texture. This approach is similar to that
used by Greenspan et al. [8] to produce a probabil-
ity map locating all texture in an image similar to
a given texture. We show that our model captures
enough relevant characteristics of a given texture
to determine the probability of each pixel in an im-
age being that texture without using discriminant
analysis. With this model, we can segment and
classify an image containing an undefined number
of different texture types.
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II. Texture Model

MRF models have been used in image restora-
tion, region segmentation, and texture synthe-
sis [9]. The property of a MRF is that a variable
Xs on a lattice S = {s = (i, j) : 0 ≤ i, j < N} may
have its value xs set to any value, but the proba-
bility of Xs = xs is conditional upon the values xr

at its neighbouring sites r ∈ Ns. A Local Condi-
tional Probability Density Function (LCPDF) de-
fined over these neighbouring sites r ∈ Ns deter-
mines the probability of Xs = xs as,

P (Xs = xs|Xr = xr, r ∈ Ns) s ∈ S, (1)

which in turn defines the MRF [10].
To model an image as a MRF, we consider each

pixel in the image to be a site on a lattice, and
the grey scale value of that pixel as the value of
that site. If the image is all of one texture, then
the derived LCPDF is the model that defines the
texture.

(a) (b) (c)

Fig. 1. Neighbourhoods. (a) The first order neighbourhood
(c = 1) or “nearest-neighbour” neighbourhood for the site
s = (i, j) = ‘•’ and r = (k, l) ∈ Ns = ‘◦’; (b) second order
neighbourhood (c = 2); (c) eighth order neighbourhood
(c = 8).

We used the neighbourhood N c
s of Geman [11],

[3], defined as

N c
s = {r = (k, l) ∈ S : 0 < (k− i)2 +(l− j)2 ≤ c},

(2)
where c refers to the order of the neighbourhood
system. Neighbourhood systems for c = 1, 2 and 8
are shown in Fig. 1 (a), (b), and (c) respectively.

Given an image of a homogeneous texture and
a predefined neighbourhood system, we can gain a
non-parametric estimate of the LCPDF by build-
ing a multi-dimensional histogram of the image.

For example, if we choose a neighbourhood
Ns = {s − 1} as shown in Fig. 2(a). To estimate
the respective LCPDF, we build a 2-dimensional

histogram with dimensions L0, L1, where L0 repre-
sents the pixel value xs and L1 represents the rel-
ative neighbouring pixel value xs−1. We initialise
F (L0, L1) = 0 ∀ L0, L1. Then by raster scan-
ning the image, we increment the variable F (L0 =
xs, L1 = xs−1) for each site s ∈ S, Ns ⊂ S. The
simple estimate of the LCPDF is then given by

P̂ (xs|xs−1) =
F (L0 = xs, L1 = xs−1)

∑

L0∈Λ F (L0, L1 = xs−1)
. (3)
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Fig. 2. Neighbourhood and its 2-D histogram

Data obtained from the image to build a
multi-dimensional histogram are not independent
and identically distributed (i.i.d.). However, the
pseudo-likelihood estimate [12] of the LCPDF uses
the same non i.i.d. data. Geman and Graffigne [13]
proved that the pseudo-likelihood estimate con-
verged to the true LCPDF with probability 1 as
the image size increased to infinity. We use this
evidence to justify use of non i.i.d. data for esti-
mating our non-parametric version of the LCPDF.

The true LCPDF is given by a histogram built
from an infinite amount of sample data. There-
fore, the true LCPDF needs to be estimated from
a multi-dimensional histogram. Where a domain
is only sparsely populated with sample data, it is
advantageous to use a non-parametric density es-
timator [14].

A. Parzen Window Density Estimator

The Parzen-window density estimator [14] has
the effect of smoothing each sample data point in
a multi-dimensional histogram over a larger area.

Denoting the sample data as Zs = Col[xs, xr, r ∈
Ns] s ∈ S,Ns ⊂ S, for a column vector z =
Col[L0, Lnr

, r ∈ Ns], the Parzen-window density

estimated frequency F̂ (z) of the frequency F in
(3) is

F̂ (z) =
1

nhd

∑

s∈S,Ns⊂S

K

{

1

h
(z − Zs)

}

, (4)
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where n is the number of sample data Zs, h is the
window parameter, and d = |Ns| + 1 equals the
number of elements in the vector z [14, p 76].

The shape of the smoothing is defined by the
kernel function K. We choose K as the standard
multi-dimensional Gaussian density function,

K(z) =
1

(2π)d/2
exp(−

1

2
zTz). (5)

The size of K is defined by the window parame-
ter h. We aim to choose h so as to obtain the best
estimate of the frequency distribution F̂ for the
LCPDF. Silverman [14, p 85] provides an optimal
window parameter:

hopt = σ

{

4

n(2d + 1)

}1/(d+4)

, (6)

where σ2 is the average marginal variance. In our
case, marginal variance is the same in each dimen-
sion and therefore σ2 equals the variance associ-
ated with the one-dimensional histogram.

III. Texture Classification

In our classification method, each individual
pixel in an image is assessed for its probability
of being the original texture. In a more sophis-
ticated version of this method, we could reason-
ably assume that pixels close to each other exhibit
similar probabilities. It may also be prudent to
incorporate boundary detection as part of a con-
strained optimisation of the probability map as
discussed by Geman et al. [15]. Such improvement
are application-driven. Here, we limit ourselves to
outlining the simple version of our classification
method.

For cases when the image was not all of one
texture, Geman and Graffigne [13] assumed that
small areas of the image were homogeneous and of
one texture. They classified on the basis that the
product of the joint probabilities for a neighbour-
hood over the area of concern resembles the joint
probability for the area, that is,

Π(xr, r ∈ Ws) '
∏

r:Nr⊆Ws

P (xr, xt, t ∈ Nr), (7)

where Ws is the window of sites, centred at s,
which are to be used for the classification of xs.

A. Probability measurement

The probability Π(xr, r ∈ Ws) as defined by (7)
was found to give poor classification results. This
was because our nonparametric LCPDF tended
to give low probabilities for the neighbourhood
configurations in the classification window, which
resulted in Π(xr, r ∈ Ws) being too susceptible
to any minor fluctuations in these neighbourhood
probabilities. Instead, we used the set of proba-
bilities defined by the LCPDF for the window Ws

and compared them directly to the set of proba-
bilities obtainable from the sample texture.

Probability P (xr, xt, t ∈ Nr) is calculated from
(4) and (5) as

P (xr, xt, t ∈ Nr) =

1

nhd(2π)d/2

∑

p∈Sy,
Np⊂Sy

exp

[

−
1

2h2
opt

(z− Zp)
T(z − Zp)

]

,

(8)

where z = Col[xr, xt, t ∈ Nr] and Zp are samples
taken from the sample texture y defined on the
lattice Sy. The samples of the LCPDF, taken from
the window Ws ⊂ S, are the set of probabilities
{P (xr, xt, t ∈ Nr), r : Nr ⊆ Ws}.

We calculate the probabilities for sample tex-
ture y for every site q ∈ Sy,Nq ⊂ Sy in a similar
fashion to (8), except for a pixel q ∈ Sy we do not
include the sample data Zp = Col[yq, yt, t ∈ Nq]
in the calculation. This is done to prevent the
probability P (yq, yt, t ∈ Nq) from being biased.

With the set of probabilities {P (xr, xt, t ∈
Nr), r : Nr ⊆ Ws} from the window to be clas-
sified, and the set of probabilities {P (yq, yt, t ∈
Nq), q ∈ Sy,Nq ⊂ Sy} from the sample texture, we
are now able to determine the classification proba-
bility. The null hypothesis is that the distribution
of probabilities from the window is the same as the
distribution from the sample texture. For this test
we use the nonparametric Kruskal-Wallis test [16].

The sampling distribution of the Kruskal-Wallis
statistic K is approximately chi-squared with 1 de-
gree of freedom. Given K, the accepted practice
is to accept or reject the null hypothesis on the
basis of a particular significance level α. In our
approach we wished to find the confidence associ-
ated with accepting the null hypothesis. This con-
fidence, for a particular window Ws, is denoted as
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PWs
:

PWs
= P (k ≥ K), (9)

where k is chi-squared distributed with one degree
of freedom. It is this probability/confidence PWs

with which we plot our probability map.

IV. Results

We use a neighbourhood system of order 2 in our
model to obtain the probability maps of Fig. 3.
These probability maps show that with our tex-
ture model it is possible to segment and classify
windows of texture with respect to just one sam-
ple texture and without prior knowledge of other
types of textures present in the image. As the
segmentation/classification method is able to dis-
tinguish those textures similar to the sample tex-
ture from those that are dissimilar, this indicates
that our model has captured all relevant features
needed to characterise a particular texture.
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Fig. 3. Probability maps of medical images: (a) lymphoid follicle in the cervix; (b) small myoma; (c) focus of stromal
differentiation in the myometrium. Sample textures (a.1) (b.1) (c.1) were used to segment and classify medical
images (a.2) (b.2) (c.2) producing the probability maps (a.3) (b.3) (c.3), respectively.


